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Abstract

This paper analyses the dynamic aspects of knowledge sharing in R&D rivalry. In a model
where research projects consist ofN sequential stages, our goal is to explore how the innovators�
incentives to share intermediate research outcomes change with progress and with their relative
positions in an R&D race. We consider an uncertain research process, where progress implies
a decrease in the level of uncertainty that a �rm faces. We assume that �rms are informed
about the progress of their rivals and make joint sharing decisions either before or after each
success. Changes in the �rms�absolute and relative positions a¤ect their incentives to stay
in the race and the expected duration of monopoly pro�ts if they �nish the race �rst. We
show that �rms always prefer to have sharing between their independent research units if they
are allowed to collude in the product market. However, competing �rms may have either
decreasing or increasing incentives to share intermediate research outcomes throughout the
race. If the lagging �rm never drops out, the incentives to share always decrease over time as
the research project nears completion. The incentives to share are higher earlier on because
sharing has a smaller impact on each �rm�s chance of being a monopolist at the end of the
race. If the lagging �rm is expected to drop out, the incentives to share may increase over time.
We also use our framework to analyze the impact of patent policy on the sharing incentives of
�rms and show that as patent policy gets stronger, sharing incentives may decrease or increase
depending on whether or not the lagging �rm has increased incentives to drop out.



1 Introduction

The ability to create knowledge-based assets plays an increasingly important role in determin-

ing �rms�competitiveness in the market place. The goal of this paper is to analyze dynamic

aspects of knowledge sharing in research and development (R&D) rivalry. Knowledge sharing

is an important way in which �rms can acquire the technological knowledge they need during

their innovation process. Firms are likely to bene�t from sharing knowledge with competitors.

However, such alliances pose especially di¢ cult challenges. This leaves us with the following

question. When would we expect cooperation to emerge between competitors?

In the economics literature, knowledge sharing between rival �rms has been the focus of

many papers. These papers have mainly studied �rms�incentives to share research outcomes

at one point in time, either before the start of research, as in the case of research joint ventures,

or after the development of a technology, as in the case of licensing.1 In reality, the decision

to share intermediate steps with rivals may be an integral part of a dynamic research process.

Hence, the aim of this paper is to ask not whether but when �rms prefer to share their research

outcomes during a research process and what the emerging patterns of sharing activities are.

While sharing may cause researchers to bene�t from each other�s expertise and generate

better ideas, it may also result in a reduction in the commercial value of their ideas. From

a social welfare perspective, sharing of research outcomes is desirable because it results in

less duplication. Hence, it is important to determine how close pro�t-driven �rms come to

maximizing welfare. In the economics literature, knowledge spillovers are stated as one of the

most important reasons for rival �rms to agree to share knowledge. However, from a dynamic

perspective, another important aspect is uncertainty. The process of research is generally

characterized by a high level of uncertainty in the beginning. Progress in research can be

described as a decrease in the level of uncertainty that researchers face. Hence, one of the

novel aspects of this project is to focus on the role uncertainty plays in the decisions to share

knowledge and to analyze how �rms�incentives to share research outcomes change during a

1See, for example, Kamien (1989) on licensing, and Katz (1986), D�Aspremont and Jacquemin (1988) and
Kamien, Muller and Zang (1992) on research joint ventures. Patenting and informal sharing between employees
of �rms are two other methods through which knowledge may be disseminated between �rms. See, for example,
Scotchmer and Green (1990) on early innovators�incentives to patent and Severinov (2001) on informal sharing
between employees.
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research process as the level of uncertainty they face decreases.

We assume that research projects consist of several sequential steps. Researchers cannot

proceed to the next step before successfully completing the prior step. Moreover, they cannot

earn any pro�ts before completing all steps of the project. In a dynamic R&D process, �rms�

incentives to share change as their positions in the race change for two reasons. First, the

expected duration of monopoly pro�ts for the leading �rm depends on the progress the �rms

make during the research process. Second, the probability that any two �rms will be rivals in

the product market changes with progress.

An important feature of the model is that we assume the di¤erent steps of research are

symmetric in all respects except in regards to how far away they are from the end of the

project. In other words, the options and technology available to the �rms are the same in all

steps of the research process. We deliberately assume that there are no spillovers during the

research process. It has been stressed in the literature that �rms may have higher spillover

rates and bigger appropriability problems in earlier stages of research than in later stages of

research.2 Although the rate of spillovers may shape the incentives to share, we show that it is

not the only relevant factor. Assuming that there are no spillovers between the research e¤orts

of di¤erent �rms allows us to focus on the role uncertainty plays in knowledge sharing.

We assume that �rms are informed about the progress of their rivals and make joint sharing

decisions either before or after each success. While sharing may cause researchers to bene�t

from each other�s expertise and help them avoid wasteful duplication of R&D, it may also

result in a reduction in the commercial value of their ideas. Because sharing decreases the

lead of one �rm, it reduces the expected pro�ts that the leader derives from �nishing the race

�rst and being a monopolist for some period of time. This cost is even greater if, but for the

sharing, the lagging �rm would drop out of the race.

Hence, the decision to share and the pattern of sharing activities critically depend on the

lagging �rm�s incentives to stay in the race in case of no sharing. The results reveal that �rms

always prefer to have sharing between their independent research units if they are allowed to

collude in the product market. Under rivalry, the incentives to share intermediate research

outcomes decreases monotonically with progress if the lagging �rm is expected never to drop

2See, for example, Katz (1986), Katz and Ordover (1990), and Vonortas (1994).
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out. The incentives to share are higher earlier on because there is more uncertainty earlier on.

Sharing has a smaller impact on each �rm�s chance of being a monopolist at the end of the

race.

If the lagging �rm is expected to drop out, the incentives to share may increase with

progress. This is because earlier in the research process the lagging �rm may have a higher

incentive to drop out and, hence, the leading �rm may have a higher chance of eliminating

rivalry by not sharing. We also illustrate that the incentives to share increase as the gap

between the �rms decreases.

We next use our framework to analyze the impact of patent policy on �rms�sharing deci-

sions. The strength of patent policy can have an important impact on �rms�sharing decisions

because it determines the costs of inventing around patented technologies. We show that if a

strengthening in patent policy causes a change in the investment decision of the lagging �rm

at any of the asymmetric histories, then sharing incentives in general get weaker. Otherwise,

they generally get stronger.

In addition to contributing to the literature on knowledge sharing, this paper is also related

to the literature on the management of innovation (Aghion and Tirole, 1994a and 1994b). The

design of an optimal R&D strategy is a multi-faced problem. Two aspects of this problem,

regarding the intensity of the R&D e¤ort and the riskiness of the R&D projects chosen by �rms,

have been dealt with extensively in the literature.3 In this paper we are interested in analyzing

how the optimal strategies of �rms change with progress. Other papers that have studied how

�rms� optimal strategies change over time in a dynamic model of R&D are Grossman and

Shapiro (1986 and 1987), Cabral (2003) and Judd (2003). Grossman and Shapiro (1986 and

1987) analyze how �rms vary their e¤orts over the course of a research project. In an in�nite-

period race, Cabral (2003) allow �rms to choose between two research paths with di¤erent

levels of riskiness. He shows that the leader chooses a safe technology and the laggard chooses

a risky one. Judd (2003) shows that there is excessive risk-taking by innovators. Our paper

di¤ers from these papers because we analyze how �rms�incentives to share and diversify change

over the course of a research project.
3See Reinganum (1989) for a survey of the papers that focus on the intensity of �rms�R&D e¤orts. Bhat-

tacharya and Mookherjee (1986), Klette and de Meza (1986) and Dasgupta and Maskin (1987) analyze the
riskiness of the research projects chosen by �rms. Cardon and Sasaki (1998) analyze whether �rms prefer to
work on similar or di¤erent R&D paths.
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The paper proceeds as follows. In the next section, we describe our set-up. In Section 3,

we explore what happens if the �rms are allowed to collude in the product market. In Section

4, we analyze the e¤ect of competition on the dynamic sharing incentives of �rms in a model

with ex-post sharing contracts and 2 research steps. We consider the case of N research steps

in Section 5. In Sections 6 and 7, we discuss extensions of our basic model with ex-ante sharing

contracts and asymmetric �rms respectively. After discussing the impact of patent policy on

sharing incentives in Section 8, we conclude in Section 9.

2 Model

2.1 Research Environment

Since we are interested in the e¤ect of competition on �rms�incentives to share, we consider

an environment with two �rms, i = 1; 2, that each invest in a research project. On completion

of the project, a �rm can produce output in a product market. We assume the �rms produce

goods that may be either homogeneous or di¤erentiated, and that they compete as duopolists

in the product market.4

To capture the idea of progress, we assume that a research project has N distinct steps

of equal di¢ culty. Hence, we assume that the �rms divide the research project into di¤erent

steps and that each �rm de�nes the steps in the same way. A �rm cannot start to work on the

next step before completing the prior step, and all steps of the project need to be completed

successfully before a �rm can produce output. There is no di¤erence between the steps in

terms of the technology or the options available to the �rms.

In the literature on multi-stage research, the phases of research are often thought of as

qualitatively di¤erent. For example, there may be two steps identi�ed as �research� and

�development.�We do not make this distinction, but rather we seek to derive endogenous

di¤erences in the research phases that result from dynamics in the decisions made by the �rms.

A basic intuition is that as �rms approach the end of the research process, their decisions might

increasingly re�ect the impending rivalry.

We assume that each �rm operates an independent research facility. We model research

4We assume that the �rms conduct the research to solve the same technical problem. However, unmodelled
di¤erences in production technologies can still lead them to produce di¤erentiated products.
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activity using a Poisson discovery process. Time is continuous, and the �rms share a common

discount rate r. To conduct research, a �rm must incur a �ow cost c per unit of time.5

Investment provides a stochastic time of success that is exponentially distributed with hazard

rate �. This implies that at each instant of time, the probability that the �rm completes a

step is �. After completing a step, a �rm can immediately begin research on the next step.

The successes of the two �rms are statistically independent. To represent the progress made

by the �rms, we use the notation of a research history (k1; k2), where ki stands for the number

of successes of �rm i.

At each point in time prior to completing the project, a �rm decides whether or not to

invest. A decision not to invest is assumed to be irreversible and equivalent to dropping

out of the game.6 Each �rm is risk neutral and makes decisions to maximize its discounted

expected continuation payo¤ given the strategy of the other �rm. The payo¤ structures are

more fully described below. A �rm that drops out earns a continuation payo¤ of zero. Given

the memorylessness nature of the Poisson process, if a �rm is conducting research, it will

not stop unless there is a change in its relative position in the research process. If the rival

completes one of the steps successfully, the �rm may decide to drop out of the game at this

point. We implicitly assume that when one �rm develops a step successfully, it does not result

in any technological spillovers. The successful �rm can either keep the innovation a secret or

patent it. Patenting does not prevent the rival from developing a non-infringing technology

that serves the same purpose.

We will also allow �rms to share their research. If one �rm has completed one (or more)

steps that the other �rm has not, the leading �rm can share its research with the lagging

�rm. After sharing, both �rms can proceed to the next research step.7 The timing of sharing

decisions and the contracts that govern the sharing process are described below.

5We do not allow the �rms to choose continuous levels of research e¤ort in our basic model. This assumption
can be motivated by presuming a �xed amount of e¤ort that each �rm can exert, which is determined by the
capacity of its R&D division. As an example, Khanna and Iansiti (1997) explain that given the highly specialized
nature of the R&D involved in designing state-of-the-art mainframe computers, �rms in this industry �nd it
very expensive to increase their number of researchers available to them. We relax this assumption later on and
consider the case of continuous e¤ort levels.

6Later, we may relax this assumption so that the decision not to invest can be reversed. We do not think
that the qualitative nature of our results will change.

7Sharing in our model has the same impact as patenting in Scotchmer and Green (1990). In both models,
the lagging �rm can proceed to the next step after disclosure.
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Regarding the information structure, we make the following assumptions. The �rms will

be able to share their research successes, but one �rm cannot acquire the rival�s innovation

without such sharing. For example, a �rm cannot observe the technical content of the rival�s

research without explicit sharing.8 Everything else in the game is common knowledge. In

particular, �rms observe whether their rival is conducting research as well as whether the rival

has a success. Third parties such as courts also observe this information.

We next consider the product market competition and the sharing process before explaining

how the �rms�payo¤s are represented.

2.2 Product Market Competition

After a �rm completes all stages of the research process, it can participate in the product

market. The �rms produce goods that may either be homogeneous or di¤erentiated to some

degree by unmodelled di¤erences in the production technologies. We represent the product

market competition in the following reduced form way.

If both �rms have completed the research project, they compete as duopolists and each

earns a �ow pro�t of �D � 0 forever. If only one �rm has completed the research project, the

�rm earns a monopoly �ow pro�t of �M > 0 as long as the other �rm does not produce output.

Here, �M > �D. As a benchmark, we will consider the case that the �rms make production

decisions to maximize their joint pro�ts in the product market. This results in a joint �ow

pro�t of �J where �J � 2�D and �J � �M . We use the notation e�D = �D

r , e�M = �M

r , ande�J = �J

r .

These payo¤s are su¢ ciently �exible to capture various models of product competition.

For example, if the �rms produce homogeneous products and compete as Bertrand or Cournot

competitors, then �J = �M > 2�D. If the �rms produce di¤erentiated products, then �J > �M

and the relationship between �M and 2�D will depend on the degree of product di¤erentiation

that exists between the products. For low levels of product di¤erentiation, �M > 2�D; for high

levels of product di¤erentiation, �M � 2�D.9

8Alternatively, we could assume that successful �rms win immediate patents. A leading �rm could then
prevent a lagging �rm from copying its research by enforcing its patent. If both �rms complete the same step,
they win non-infringing patents.

9The magnitudes of each of the pro�ts �D, �J and �M do not depend on the decisions taken during the
research phase. In future research, we may relax this assumption.
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As an example, consider a demand function of the type qi = (a (1� )� pi + pj) =
�
1� 2

�
,

where 0 <  < 1 so that the products are substitutes.10 The goods are more di¤erentiated the

higher is . It is possible to show that �M � 2�D if and only if  is su¢ ciently large.11

From now on, we consider the case that there are N = 2 steps in the innovation process.

In Section 5, we consider how our results extend to the case of an N -step innovation process.

2.3 Sharing of Research Outcomes

There are potential e¢ ciencies in our model for �rms to cooperate in the research stage.

Suppose that one �rm successfully completes a stage of research before the other �rm does.

We assume that the successful �rm can costlessly share this knowledge with the other �rm,

thereby saving the lagging �rm from having to continue to invest to complete the stage. From

the point of view of social e¢ ciency, such sharing will always be e¢ cient because it prevents

resources being spent to duplicate research results.

Because of the e¢ ciencies of sharing, regulators in many countries encourage sharing

arrangements, especially in the early stages of research. Firms may use a variety of contractual

arrangements to govern the sharing process. There may be some legal restrictions, however,

that prohibit sharing contracts that would inhibit competition in the output market. We want

to consider �rms incentives to share research using legal contracts. To this end, we want to

classify contracts as either legal or illegal and limit our attention to legal contracts. However,

even in our relatively simple dynamic framework, there are many contracts that might be writ-

ten and it is not always obvious which ones we might want to classify as anti-competitive. Our

�rst approach will be to consider two types of sharing contracts that are commonly observed

in practice and have also been analyzed elsewhere in the literature. Later, we may consider a

wider family of contracts.

The main of sharing contract we consider is ex post sharing or licensing, where the leading

�rm shares its results with the lagging �rm in exchange for a �xed fee. Sharing will occur

whenever the joint pro�ts of the two �rms are higher with sharing than without sharing. We

do not place any restrictions on the fee, but we assume that the successful �rm (the leader)

makes a take-it-or-leave-it o¤er to the other �rm (the follower). The leader, therefore, has all

10Singh and Vives (1984) show how these demand functions derive from particular consumer preferences.
11The Hotelling models provide other examples of di¤erentiated duopoly that can correspond to these pro�ts.
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of the bargaining power in the negotiation and will o¤er a fee that leaves the follower just

indi¤erent between accepting and rejecting.12

Because the research project has 2 steps, there are six histories at which one �rm has more

knowledge than the other. These are the histories (1; 0), (0; 1), (2; 0), (0; 2), (2; 1) and (1; 2).

We assume that if sharing occurs, it physically occurs instantly once one of these histories

is reached. Given the memoryless nature of the Poisson process, this assumption is not very

restrictive. We also assume that when a leading �rm is more than one step ahead of the lagging

�rm, all the additional steps are shared, so that the lagging �rm catches up to the leading �rm.

This is a simplifying assumption.

We also consider a second type of sharing contract, ex ante sharing. We assume that

at the histories (0; 0) and (1; 1), the �rms can make a joint decision about investing in the

next research step and agree that once the step is completed, both �rms will have access to

the knowledge.13 The sharing agreement allows for contingent payments between the �rms

when the step is completed and the physical sharing of knowledge occurs. Knowledge sharing

arrangements of this nature are often referred to as research joint ventures (RJV). Formally,

we assume that the research technologies are not a¤ected by the agreement. This means there

are no synergies between the �rms in the research process.14 Rather, the RJV is an agreement

that allows both �rms to have access to a success achieved by either one. Hence, it creates the

opportunity for the �rms to avoid wasteful duplication of R&D results. Alternatively, it allows

the �rms to agree to have one of the two facilities shut down altogether.15

12This division of bargaining power is appealing because it insures that each �rm earns the full return to its
research e¤ort. Other divisions of bargaining power might also be considered. An existing literature considers
how other divisions of bargaining power in licensing arrangements may a¤ect the research incentives. See, for
example, Katz and Shapiro (1985 and 1986), Shapiro (1985), Green and Scotchmer (1990 and 1995), Aghion
and Tirole (1994), and D�Aspremont, Bhattacharya and Gerard-Varet (2000).
13 In histories where the �rms do not have the same number of successes, they can make a sharing agreement

which involves both ex post and ex ante sharing. This is a common occurrence in RJVs, where the �rms share
their existing knowledge in an area in order to be able to work on the same research question together.
14Analyzing the collaborative R&D agreements of alliances and consortia registered under the National Co-

operative Research Act in the US, Majewski (2004) shows that when the participants are direct competitors,
they are likely to avoid spillovers.
15Such an asymmetric shut-down decision will never be optimal in this model, whether or not the shut-down

decision is reversible.
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2.4 Histories and Payo¤ Structures

To describe the game at any point in time, we need to specify how many �rms are still active

in the game, how many successes each active �rm has, and whether there has been sharing.

We use the following notation. Let (k1; k2) denote a research history where ki is the number

of steps that �rm i has completed. The histories can be partially ordered so that (k1; k2) is

earlier than (k01; k
0
2) if and only if ki � k0i for i = 1; 2, with strict inequality for at least one

�rm. In the following analysis, we refer to histories where k1 = k2 as symmetric histories and

to those where k1 6= k2 as asymmetric histories.

If a �rm has dropped out of the game, we use X to denote this in the history. For example,

to represent the history where �rm 1 is working on the second step and �rm 2 has dropped

out of the game, we use (1; X).16

Finally, to complete the description of the histories, we need to incorporate the sharing

decisions into our notation for the history of the game. At symmetric histories, where there

is no possibility of ex post sharing, we continue to use the notation (k; k) to denote that each

�rm has k successes. At asymmetric histories, we need to indicate whether the �rms have

made a sharing decision. At the instant that a �rm achieves a success, we denote the history

as (k1; k2) with k1 6= k2. At this point, the �rms make a sharing decision.17 If the �rms

share, the history becomes (k; k) where k = maxfk1; k2g. If the �rms do not share, the history

becomes (k1; k2; NS). For example, consider the history (2; 1). If the �rms share, then the

history becomes (2; 2). If the �rms do not share, then the history becomes (2; 1; NS). In a

continuation game at (k1; k2; NS), the �rms do not get another chance to share until the next

innovation is achieved.

At any point during the research process, we denote the discounted expected continuation

payo¤ of �rm i starting at the history (k1; k2) by Vi(k1; k2). This payo¤ is developed recursively

from future continuation payo¤s. Consider, for example, the continuation payo¤ of �rm 1 at

the history (1; 0; NS), V1 (1; 0; NS). Suppose there will not be any sharing between the �rms

16We do not extend the partial ordering to histories where a �rm has dropped out. This is because we will
only need to refer to the ordering at histories where both �rms are still active in the game.
17We assume that the sharing decision takes place in the same instant of time as the success, but we are using

separate notation to capture the history before and after the sharing decision. The history (k1; k2) precedes the
history (k1; k2; NS) in the partial ordering of histories. The two histories have the same ordering relative to all
other histories in the game.
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at any future history and the lagging �rm will always choose to invest. If �rm 1 develops the

second step and �rm 2 continues to invest after �rm 1 develops the second step, then �rm

1�s continuation payo¤ is V1(2; 0; NS). If �rm 2 develops the �rst step before �rm 1 develops

the second step and both �rms stay in the game, then �rm 1�s continuation payo¤ is V1(1; 1).

Hence, we have

V1 (1; 0; NS) =

Z 1

0
e�(2�+r) (�V1(2; 0; NS) + �V1(1; 1)� c) dt

=
�V1(2; 0; NS) + �V1(1; 1)� c

2�+ r

where the payo¤s V1(2; 0; NS) and V1(1; 1) are similarly developed from future continuation

payo¤s.

After a �rm has �nished the research process, it earns continuation pro�ts in the output

market. To see how the payo¤s are constructed, suppose �rm 1 is the leading �rm and �rm 2

continues to research the second step. If there is no possibility of sharing, then we are at the

history (2; 1; NS). Firm 1 can produce output as a monopolist. In each instant of time, �rm

2 has a probability � of success. As soon as �rm 2 is successful, �rm 1 starts to earn duopoly

pro�ts forever after. Hence, we have

V1 (2; 1; NS) =

Z 1

0
e�(�+r)

�
�M + �

�D

r

�
dt

=
�M + ��

D

r

�+ r
:

If the �rms decide to share, the continuation payo¤ of �rm 1 is equal to V1 (2; 2) = �D

r . The

payo¤s at other histories are developed similarly using recursion.

2.5 Example of Game Structure

To clarify the timing of decisions in the research phases of the game, consider the following

illustration. As in Scotchmer and Green (1990), we use a discrete game tree as a stylized

representation of the underlying continuous time model. We assume that �rms share using the

ex post licensing arrangements discussed above.18

18Scotchmer and Green (1990) include a rigorous justi�cation for this representation based on a dominant
strategy argument. That argument needs to be modi�ed for our model in part because unlike them, we model
the investment decision as irreversible. However, the basic idea is the same.
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Figure 1: Game Tree following History (0,1)
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At the beginning of the game, both �rms simultaneously decide whether to invest or not.

As shown in the subgame depicted in Figure 1, after one of the �rms has made a discovery,

the �rms can jointly decide whether to share the winner�s discovery. As mentioned before,

sharing brings them to a symmetric position in the R&D phase. If they decide not to share,

the laggard decides whether to continue to invest in order to develop the �rst innovation and

the leader decides whether to invest to develop the second innovation. If they decide to share,

they both simultaneously decide whether to invest in order to develop the second innovation.

If the laggard (re)develops the �rst innovation before the leader develops the second in-

novation, both �rms start to invest to develop the second innovation. If the leader develops

the second innovation before the laggard develops the �rst innovation, the �rms again decide

whether to share, this time both of the innovations. If they agree to share, they start to com-

pete in the product market. If they agree not to share, the leader starts to produce while the

laggard decides whether to continue to invest.

3 Benchmark Analysis

Before solving the game, we consider a benchmark case where the �rms cooperate to maximize

their joint pro�ts. We assume that the �rms make all investment, sharing, and product market

decisions jointly.

At each history prior to the product market, the �rms jointly decide whether to share

the results of their research (if one �rm is ahead) and whether one or both �rms will invest.19

Once one �rm completes the research project, the �rms make joint decisions about the product

market. We do not make any assumptions about how the �rms divide the joint pro�ts, but we

simply assume that each decision is made to maximize the sum of the continuation pro�ts of

the two �rms.20 We have the following result.21

Proposition 1 Suppose that the �rms maximize their joint continuation pro�ts. Then, at

any history such that one �rm has more research successes than the other, the optimal sharing

19Throughout the paper, we assume that if a �rm stops researching before completion of the project, it cannot
reenter the game at a later date. This means that investment decisions are also participation decisions. We
make the assumption for simplicity, but consider the consequences of relaxing it later.
20We do not consider the possibility that the �rms can commit to decisions prior to making them, but there

is no dynamic inconsistency in the joint pro�t maximization problem.
21The proposition is proved in the appendix below.
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decision is for the leading �rm to share its research with the lagging �rm. Given this sharing

pattern, the �rms make investment decisions only at the symmetric histories (0; 0) and (1; 1).

At the history (2; 2), the �rms cooperate in the product market and earn joint continuation

pro�ts e�J = �J

r .

(i) If �J � 2cr
� + cr2

2�2
, the optimal investment decision is for both �rms to invest at the

histories (0; 0) and (1; 1). At (0; 0), the joint continuation pro�ts are 4�2

r(2�+r)2
�J � 2(4�+r)

(2�+r)2
c.

(ii) If �J < 2cr
� + cr2

2�2
, neither �rm invests at (0; 0) regardless of whether the �rms would

subsequently invest at (1; 1). At (0; 0), the joint continuation pro�ts are 0.

Proposition 1 reveals several features of our model. First, it is jointly optimal for the �rms

to share a success as soon as it is developed by either one of them and to move on to the next

stage of the R&D process. This re�ects the traditional justi�cation for sharing arrangements

as a way for �rms to avoid wasteful duplication. Second, if it is optimal for one �rm to invest,

it is optimal for both �rms to invest. This is a feature of the Poisson discovery process that we

are using. Indeed, with �ow costs of investment, if there were N identical research facilities,

then it would be optimal for all of them to conduct research simultaneously until one of the

facilities achieves a success. This speeds up the time to innovation, and the bene�ts of the

time savings outweigh the costs of running simultaneous facilities. Later, we discuss how our

results might change if we used a model of the research process that does not have this feature.

The proposition illustrates how the cost and bene�t parameters a¤ect payo¤s. In the region

where �rms invest, their joint continuation pro�ts at the beginning of the game is increasing

in �; the hazard rate for the Poisson discovery process. A higher � means that the research

is likely to be successful sooner. The joint pro�ts are also decreasing in the discount rate r

and the �ow cost of research c. Similar comparative statics results obtain for the continuation

pro�ts at other points in the game.

4 Ex-post Sharing

The �rst type of sharing contract we consider is ex post sharing. Suppose that one �rm

completes a research step ahead of the other �rm. We consider a sharing contract where the

leading �rm shares its results with the lagging �rm in exchange for a �xed fee. Such sharing

takes place as long as it results in higher industry pro�ts. Although a range of fees would
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typically be acceptable to both �rms, as discussed in Section 2.3, we will assume that the

leader has all the bargaining power and sets the licensing fee by making a take-it-or-leave-it

o¤er to the follower.

For each speci�cation of the basic parameters of the game, we use backwards induction to

�nd the subgame perfect equilibria in pure strategies. We consider generic values of parame-

ters.22 In this section, we �rst present the general properties of the equilibrium. Then, we

present a full characterization for all possible values of �M and �D using a diagram and discuss

how the equilibrium outcome changes as the pro�t levels change.

The primary bene�t of sharing is that it avoids the wasteful duplication of R&D. The

primary cost is the e¤ect on output market competition. Because sharing erodes the lead of

one �rm, it reduces the expected pro�ts that the leader derives from �nishing the race �rst and

being a monopolist for some period of time. This cost is even greater if, but for the sharing,

the lagging �rm would drop out of the race.23 The trade-o¤ between monopoly and duopoly

pro�ts, has not been addressed at great length in the patent race literature because patent

models usually assume a winner-take-all payo¤ structure.24

A central question is how the incentives to share change over time. Because each of the

research steps is identical from a technology standpoint, a conclusion that sharing incentives

must change over time is not obvious. Certainly, if one �rm is ahead of another, that may

impact each �rm�s individual choices. However, if we consider the histories (1; 0) and (2; 1), it

is not obvious that the sharing incentives should be any di¤erent. In both cases, the leader is

one step ahead of the follower. Sharing is socially e¢ cient in both cases and generates the same

savings in terms of the elimination of wasteful R&D. The history (1; 0) is, however, earlier than

the history (2; 1). At the earlier history, there is more uncertainty to be resolved before the

�rms enter the product market. We will consider how this uncertainty a¤ects �rms decisions.

The number of steps that the lagging �rm is behind is also a factor in �rms� sharing

decisions. We control for this, however, by comparing histories such that the lagging �rm is a

22 In our proof, we divide the space of parameters into regions such that the equilibrium set is constant on
each region. We do not consider parameters on the boundaries of the regions. For these parameters, there can
be multiple equilibria that exist only on the boundary and not for a generic set of parameters.
23Scotchmer and Green (1990) examine the e¤ect of secrecy on the drop-out decision of the �rm.
24Katz (1986) considers a model with one stage of research such that �rms �rst engage in cooperative and

independent R&D and then compete in an oligopolist output market. Also, see Cardon and Sasaki (1998) and
Severnov (2001) for two more recent models of innovation where the �rms compete as di¤erentiated duopolists.

14



�xed number of steps behind the leading �rm. This implies that in an N -step research process,

we compare sharing incentives at all histories (k + g; k) where g is a �xed gap between the

leading �rm and the lagging �rm. The size of the gap can be as small as 1 or as large as N �1.

When N = 2; we compare the sharing decisions at (2; 1) and (1; 0) where the leading �rm is

one step ahead of the lagging �rm.

From a dynamic perspective, what matters is whether one history precedes another. To

consider dynamics, we compare histories (k + g; k) and (k0 + g; k0). If k < k0, then the history

(k+g; k) precedes the history (k0+g; k0). For example, when N = 2; the history (1; 0) precedes

the history (2; 1).

The next de�nition states a formal monotonicity property for the general N -step model.

When the property holds, sharing incentives may be said to decline over time as the �rms

approach the end of the game. We de�ne the property for histories such that �rm 1 is the

leader. Because the equilibria in our game are symmetric, when the property holds, it also

holds for histories such that �rm 2 is the leader.

De�nition 1 An equilibrium satis�es the monotonicity property if whenever the �rms share

at the history (k + g; k), then they also share at the earlier history (k0 + g; k0) where k0 < k.

Here k and k0 range from 0 to N � g and g = 1; :::; N � 1:

We are now in a position to analyze the model when N = 2. Our central question is

whether the monotonicity property holds. When N = 2; the monotonicity property states

that whenever �rms share at the history (2; 1); they also share at the earlier history (1; 0).

There are three sharing patterns that satisfy this property. In the �rst pattern, the �rms share

at both (1; 0) and (2; 1): In the second pattern, the �rms do not share at either (1; 0) or (2; 1).

These patterns are weakly monotonic. In the third pattern, the �rms share at (1; 0), but they

do not share at (2; 1). This pattern is strongly monotonic. The monotonicity property fails if

the �rms do not share at (1; 0), but do share at (2; 1).

There are two principle motivations for �rms to decide against sharing. First, if the lagging

�rm continues to research, it will take longer to �nish the project allowing a longer expected

period of monopoly pro�ts for the leading �rm. Second, if the lagging �rm exits the game,

the leader can expect to earn monopoly pro�ts forever upon �nishing. It turns out that
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these two motivations can lead to di¤erent dynamics over time. To see this, we �rst consider

environments such that exit does not occur.

De�nition 2 Region A consists of those parameter values such that in every subgame perfect

equilibrium of the game, �rms do not exit at any history either on the equilibrium path or o¤

the equilibrium path. Region B consists of all other parameter values.

Region A is given as follows:

Lemma 1 Region A consists of all parameters such that �D � cr
� (2 +

r
�).

Lemma 1 focuses on a �rm that is as far behind the leader as possible when the leader

has not shared its research. Because the lagging �rm does not have any bargaining power,

its payo¤ at (2; 0; NS) or (0; 2; NS) is the payo¤ it would get by conducting the two steps of

research on its own and then producing in the output market as a duopolist. Intuitively, this is

the worst possible position for a �rm. We show that the lagging �rm stays in at these histories

if and only if the inequality �D � cr
� (2 + r=�) holds. We also show that when the inequality

holds, the �rms stay in the game at all other histories.

The next proposition records our main monotonicity result.

Proposition 2 The monotonicity property holds for every subgame perfect equilibrium in Re-

gion A.

The proof of the Proposition requires us to consider detailed equilibrium conditions.25

However, there is an underlying intuition for the result that we explain here. The bene�t of

sharing is the savings of duplicated R&D costs for one step of research. This bene�t does not

change over time. In contrast, the cost of sharing changes over time. The cost of sharing is

measured in terms of the e¤ect of sharing on future pro�ts in the product market. Because

of the resolution of uncertainty, sharing is more costly at (2; 1) than it is at (1; 0). To see

this, note that in Region A, since the lagging �rm never exits the game, the �rms will be

competing as duopolists in the product market eventually. At (2; 1), the leading �rm is done

25The formal derivation of all the equilibria is in a companion appendix that is available on request. In the
appendix below, we derive the equilibrium in one region to illustrate the backward induction.
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with the project and is assured of monopoly pro�ts until the lagging �rm catches up. If the

�rms share, then the leading �rm foregoes these monopoly pro�ts, as both �rms immediately

begin competing as duopolists. In contrast, consider the earlier history (1; 0): After sharing,

the new history is (1; 1). The leader has not foregone all of his chance to earn monopoly pro�ts,

because he can still �nish the game �rst. In addition, at (1; 0);the leader had no guarantee

of monopoly pro�ts anyway. The expectation of future monopoly pro�ts is not so much lower

after sharing than if the �rms had not shared. Thus, sharing is less costly at (1; 0) than at

(2; 1): In contrast, the bene�ts of sharing in terms of R&D cost savings do not change over

time. The net e¤ect is that �rms are more likely to share earlier in the game. As we prove in

Proposition 2, the incentive to share is always stronger at (1; 0) than at (2; 1). The intuition

seems robust, so that we expect the monotonicity result to hold more generally for games with

N -step research projects. We develop a result along these lines in Section 5.

We next consider region B. In this region, a lagging �rm may exit the game if the leader

does not share at some history. This introduces an important strategic motive for a leading �rm

to refuse to share. Our question is whether, in light of this, the pattern of sharing continues

to satisfy the monotonicity property. We �nd that this is not the case. A lagging �rm may be

more likely to drop out earlier in the game, when it has more research left to complete. Given

this, a leading �rm may be less likely to share earlier in the game.

Proposition 3 When r
� < 2; there exist parameter values such that a subgame perfect equi-

librium does not satisfy the monotonicity property. When r
� > 2; the monotonicity property

holds for every subgame perfect equilibrium in Region B.

The monotonicity result of Proposition 2 extends to Region B, provided that r
� > 2. A

no sharing decision is never followed by a sharing decision. However, the monotonicity result

cannot be further extended.

As we demonstrate in the proof of the proposition,26 when r
� < 2, there exist values of �

D

and �M such that in equilibrium the �rms do not share step 1 at (1; 0), but do share step 2

at (2; 1). The lagging �rm drops out at the history (1; 0; NS), but stays in at the later history

26The formal derivation of all the equilibria is in a companion appendix that is available on request. In the
appendix below, we derive the equilibrium in one region to illustrate the backward induction. This example
demonstrates a non-monotonicity on the equilibrium path.
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(2; 1; NS). The leader does not share at (1; 0) because this would maintain a rival that is

otherwise eliminated. Since the rival drops out at (1; 0; NS), the history (2; 1) is not reached

in equilibrium.27 Hence, the non-monotonicity pattern is not observed along the equilibrium

path. The parameter restriction means that the �rms must be relatively patient and good at

research for this type of equilibrium to exist. Sharing at (1; 0) allows both �rms to work on

step 2 and hastens the end of the research phase. The �rms are willing to forego this bene�t

when r
� is not too large.

We also demonstrate an equilibrium in which a non-monotonic sharing pattern arises on

the equilibrium path. In equilibrium, the lagging �rm drops out at the history (2; 0; NS),

but stays in at (2; 1; NS) and (1; 0; NS). The �rms do not share step 1 at (1; 0), because

this way they can reach the history (2; 0; NS), at which point the lagging �rm drops out. A

non-monotonic sharing pattern arises because after (1; 0; NS), the �rms sometimes reach the

history (1; 1). Both �rms invest in step 2. The game may then proceed to the history (2; 1),

at which point the leading �rm shares step 2 with the lagging �rm.

For this type of equilibrium to exist, we need to impose a stronger restriction on r
� . As

the proof shows, for r
� >

1
2(
p
5 � 1), there are no non-monotonic sharing patterns along the

equilibrium path. For r
� <

1
2(
p
5 � 1) , there exist values of �D and �M such that the non-

monotonic sharing pattern arises on the equilibrium path.

Figure 2 depicts the equilibrium outcomes in the case when we see non-monotonic sharing

patterns both on and o¤ the equilibrium path.28 This is the case that r
� <

1
2(
p
5 � 1). The

diagram lists the sharing pattern for each region. For example, at the top left of the diagram,

the sharing pattern S,NS,NS describes the following sequence of decisions: i) at (1; 0), the

leader shares (S) step 1; ii) at (2; 0), the leader does not share (NS) step 1; iii) at (2; 1), the

leader does not share (NS) step 2. The diagram shows that there are two regions with the non-

monotonic sharing pattern NS,NS,S. This pattern is non-monotonic because the leader does

not share step 1 at (1; 0), but does share step 2 at (2; 1). The two regions with this sharing

pattern are separated by a vertical line. In the region to the left of the line, the follower

27By symmetry, the follower also drops out at the history (0; 1; NS). Thus, there is no path to (2; 1).
28For these parameters, there are multiple equilibria at (0; 0) in some of the regions. In the regions, both �rms

can be in or both �rms can be out at (0; 0). In the diagram, we selected the equilibrium such that both �rms
invest at (0; 0). Otherwise, the region such that neither �rm invests at (0; 0) would be larger. A full description
of all the equilibria including all multiplicities is available in the companion appendix to the paper.
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drops out at the history (1; 0; NS). Because of this, the history (2; 1) is not reached in the

equilibrium.29 Thus, an observer of the game would not observe a non-monotonicity. In the

region to the right of the line, the follower stays in the game at the history (1; 0; NS). Because

of this, the history (2; 1) is reached along the equilibrium path.

The diagram also shows the sharing patterns in other regions. Consider region A. Here, we

have that �D � cr
� (2 +

r
�): In Region A, the lagging �rm never drops out of the game and the

sharing patterns are monotonic. Of course, by Proposition 2, we already knew that this result

must hold. Consider how the sharing pattern changes as �M increases, but with the value of �D

held �xed. For small values of �M , the sharing pattern is S,S,S. As monopoly pro�ts increase,

sharing breaks down at the history (2; 1).30 As monopoly pro�ts are increased further, sharing

eventually breaks down at the earlier history (1; 0) as well. This is a monotonicity result for

the comparative static analysis. As monopoly pro�ts �M increases, sharing breaks down, but

it breaks down at later histories �rst.

Two regions in the diagram have a sharing pattern of S,NS,S. Here, the leading �rm does

not share step 1 at (2; 0), even though it does share step 1 at the earlier history (1; 0). We do

not interpret this as a non-monotonicity result, because we only compare sharing decisions at

histories where the gap between the leader and the follower is the same.

On the far left of the diagram, for parameters �D < cr
� ; the leading �rm is indi¤erent

between sharing or not sharing at (2; 0). Either way, the lagging �rm drops out of the race

and the decision does not a¤ect payo¤s on the equlibrium path.

5 N-step Research Process

In this section, we discuss some results obtained in a model with N research steps of equal

di¢ culty.

As a starting point, we consider our benchmark model where the �rms cooperate to maxi-

mize their joint pro�ts. The �rms make all investment, sharing, and product market decisions

jointly. Proposition 1 extends in a straightforward way. At asymmetric histories, the optimal

sharing decision is for the leading �rm to share its research with the lagging �rm. At the �nal

29By symmetry, the follower also drops out at the history (0; 1; NS). Thus, there is no path to (2; 1).
30Sharing also breaks down at the histories (2; 0) and (0; 2); but we do not have any other histories to compare

these to with the same gap of 2 steps between the leader and the follower.
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history (N;N), the �rms cooperate in the product market to earn joint continuation pro�tse�J . If the joint continuation pro�ts are above a critical threshold, then both �rms invest at all
earlier symmetric histories. Otherwise, at the start of the game, neither �rm invests.

We next turn to our monotonicity result that sharing declines over time. Proposition 2

extends to a model with 3 research steps. We have

Proposition 4 When N = 3; the monotonicity property holds for every subgame perfect equi-

librium in Region A. Region A consists of all parameters such that �D � cr
� (3 + 3

r
� +

r2

�2
).

To prove the proposition, we derive the equilibria as we did for the case of N = 2:31 Region

A is the set of parameters such that the lagging �rm would stay in the game at the history

(3; 0; NS). At this history, the lagging �rm is as far behind as possible and has no hope of

ever earning monopoly pro�ts. Because the lagging �rm does not have any bargaining power,

its payo¤ at (3; 0; NS) is the payo¤ it would get by conducting all three steps of research on

its own and then producing in the output market as a duopolist. Region A is all parameters

such that this payo¤ is positive.

The monotonicity property implies that if the �rms share at the histories (k + 1; k), then

they share at (k; k � 1) for k = 1; 2: At these histories, the leading �rm is one step ahead of

the lagging �rm. The monotonicity property also implies that at the history (3; 1) when the

leading �rm is two steps ahead, they share at the earlier history (2; 0):

The monotonicity property cannot be strengthened to comparisons between histories such

that the leading �rm is ahead by a di¤ering number of steps. For example, we �nd an equi-

librium such that the �rms share at (2; 1), but do not share at the earlier history (2; 0): The

reason is that at (2; 0), the leading �rm is further ahead and has more to give up in terms of

forgone monopoly pro�ts.32

We expect that Proposition 2 could be extended further to a model with N research steps.

The intuition behind the proposition is general and does not depend on the assumption that

N = 2. The bene�t of sharing is the savings on R&D costs. These cost savings do not change

31The proof is available from the authors on request. The calculations are straightforward, but long. In the
appendix below, we derive the parameter condition that de�nes Region A.
32When N = 2; we also found equilibria in Region B such that the �rms share at (2; 1); but not at (2; 0). The

sharing pattern arises because the lagging �rm exits after the decision not to share. When N = 3; we �nd this
sharing pattern in Region A, even though the lagging �rm does not ever exit the game.
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over time. However, the cost of sharing, measured in terms of foregone monopoly pro�ts, do

change over time. The advantage to the leading �rm to being a �xed number of steps ahead of

the lagging �rm increases over time as uncertainty is resolved. The net e¤ect is that the �rms

have decreasing incentives to share as the game progresses

We have not proved Proposition 2 for the general case of N research steps, because the

equilibrium calculations become too cumbersome. Instead, we analyzed a related problem

that we interpret as a partial generalization of our monotonicity result. Consider any starting

history (k + 1; k) in the N -step model such that the leading �rm is one step ahead of the

lagging �rm. If the �rms share at this history, then the new history becomes (k + 1; k + 1):

If they do not share, then the new history is (k + 1; k;NS): Assume that at all histories after

(k+1; k;NS) and (k+1; k+1) the �rms do not share and they also do not exit the game. Under

this assumption, we can derive formulas representing the �rms�joint continuation payo¤s. We

can compare the continuation payo¤s from sharing and not sharing at (k + 1; k). The bene�t

of sharing (which is equal to the cost savings by the lagging �rm) is an increasing (linear)

function of the �ow cost of research c: Because of this, there is a threshold cost c(k+1; k) such

that the �rms decide to share if and only if c � c(k + 1; k): Using numerical analysis, we can

show that the threshold cost c(k + 1; k) is increasing in k for N � 20.33

The �nding suggests that sharing is more likely to occur at earlier histories. The cost

parameter c is more likely to be above the sharing threshold cost c(k+1; k) at earlier histories

than at later ones. The result is di¤erent from Proposition 2 because the assumptions about

�rms�behavior after (k+1; k) may not be consistent with any equilibrium. However, the result

is consistent with the intuition that the incentives to share decline over time when �rms never

exit.

Our other result, Proposition 3, is that there are parameter values in Region B such that a

subgame perfect equilibrium does not satisfy the monotonicity property. These non-monotonic

equilibria continue to exist as subgames of the N -step model. This is because the subgame

that begins at the history (N � 2; N � 2) is a two-stage game. Parameters that support the

equilibrium are in Region B of the 2 step game. The parameters are also in Region B of

33We compared the payo¤s by evaluating them on a discrete grid of parameter values. The formulas appear to
be su¢ ciently continuous that we do not expect we missed any singularities in our simulations. The computations
are available on request.

22



the N -step game because Region B grows as N increases.34 Thus, Proposition 3 continues to

hold.35

6 Ex-ante Sharing

In this section, we consider a second type of sharing contract. We assume that at any (sym-

metric) history, the �rms can make a joint decision about investing in the next research step

and agree that once the step is completed, both �rms will have access to the knowledge as in

a RJV.

Consider a sharing contract that is signed at the beginning of the game. The history is

(0; 0). The �rms both agree to conduct research on the �rst step. The �rms also agree that

when one �rm has a success, it will share the success with the lagging �rm. In exchange, the

lagging �rm will pay a fee to the leading �rm. At the time the contract is signed, the fee is

contingent - it is paid by the lagging �rm to the leading �rm at the instant of innovation. We

assume that the fee is set so that the lagging �rm is indi¤erent between paying the fee to get

the result, and not paying the fee and not getting the result. This means that the leading

�rm extracts the full value of its success. Therefore, as was the case under our ex post sharing

contracts, both �rms have e¢ cient incentives to invest ex ante.36

We consider a similar sharing contract at the history (1; 1). We then analyze the sharing

pattern to �nd whether the �rms are more likely to share at (0; 0) than at (1; 1). Our analysis

shows that there is no di¤erence in terms of sharing incentives between the ex ante sharing

contracts and the ex post sharing contracts. Because of this, the dynamics of sharing over time

are essentially the same as before.

7 Asymmetric Firms

So far we have assumed that the �rms are symmetric in their research capabilities. In this

section we relax this assumption and assume that the �rms can di¤er in their research capabil-

34Region A shrinks as N increases, because a lagging �rm has a lower payo¤ from staying in the game at
(N; 0) than at (N � 1; 0). Region B grows as Region A shrinks, since they are complementary sets.
35 If a �rm drops out of the N� stage game prior to the history (N�2; N�2); then the continuation equilibrium

would still exist but would represent o¤-the-equilibrium path behavior.
36The contract need not provide any direct incentives for investment and would induce e¢ cient e¤ort even if

the e¤ort levels were non-contractible.
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ities. That is, di¤erent �rms may have di¤erent areas of expertise which make them perform

better in di¤erent stages of the research process. This is often the case, for example, in the

biotechnology industry (Greis et al., 1995). Large pharmaceutical corporations form alliances

with small research �rms which perform the basic research towards the development of a new

product. After small research �rms successfully complete the initial stages of research project,

large pharmaceutical corporations work to bring the new product into the market.

To represent this kind of a scenario, we consider the N = 2 model and assume that one of

the �rms in our model is better at �rst-stage research and the other �rm is better at second-

stage research. Let � stand for the hazard rate of the more capable �rm and � stand for the

hazard rate of the less capable �rm in each period.37

Recall from our benchmark analysis in Section 3 that if the �rms can collude in the output

market, then the optimal sharing decision is for the leading �rm to share its research with the

lagging �rm. Moreover, if it is optimal for one �rm to invest, it is optimal for both �rms to

invest. With asymmetric �rms, it is still the case that the optimal sharing decision is for the

leading �rm to share its research with the lagging �rm. However, as far as the investment

incentives of the �rms are concerned, we can have one of the following outcomes: (i) Neither

�rm invests, (ii) both �rms invest in both stages, (iii) only the e¢ cient �rm invests in both

stages, and (iv) only the e¢ cient �rm invests in the �rst stage and both �rms invest in the

second stage. There are no equilibrium outcomes where only the ine¢ cient �rm invests because

if expected pro�ts are high enough for the less e¢ cient �rm to invest, they are high enough

for the more e¢ cient �rm to invest.

Under rivalry, the monotonicity result stated in Proposition 2 for Region A still holds. The

boundary of Region A is again de�ned by the incentives for the lagging �rm to stay in the race

at the histories (2; 0; NS) or (0; 2; NS). We get the same condition whether it is �rm 1 or �rm

2 that is the lagging �rm.

In Region B, the asymmetry between the �rms causes an asymmetry in the �rms�drop-out

decisions. That is, there may be cases where the more e¢ cient �rm, if it were the lagging �rm,

would stay in the market, but the less e¢ cient would not.

As far as the sharing conditions are concerned, since the hazard rate does not enter the

37Derivations of the results in this section are available on request.
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second-stage sharing condition, asymmetry does not a¤ect the sharing decision at the histories

(2; 1), (1; 2), (2; 0) and (0; 2). After the �rst success, there may be cases where there would be

sharing if it is the more e¢ cient �rm that has the �rst success, but no sharing if it is the less

e¢ cient �rm that has the �rst success. If it is the more e¢ cient �rm that has the �rst success,

this implies that the �rm that is less e¢ cient in the second-stage research is ahead and the

�rm that is less e¢ cient in �rst-stage research is behind. Both strengthen the incentives to

share the �rst success.

With the consideration of asymmetric �rms, one question that arises is whether we may

have cases where only the e¢ cient �rm invests in each stage. To consider this issue we need to

change the assumption we have made so far that once a �rm exits the race, it cannot re-enter.

Allowing re-entry, we can show that �rms with asymmetric hazard rates may �nd it optimal

to specialize. To see this, consider the extreme case where � = 0. It is straightforward to show

that only the e¢ cient �rm invests at (0; 0). As soon as the �rst success arrives, the �rm shares

it with the non-investing �rm and drops out. Hence, without the prospective of sharing the

�rst success at (1; 0), the �rm would not have invested at (0; 0).

8 Impact of Patent Policy

The framework we have developed can be used to investigate several policy questions. Two

important questions in patent policy are how strong patent protection should be and how

strict the non-obviousness requirement should be (i.e., whether intermediate research outcomes

should be patentable). In this section, we focus on the �rst question.

So far we have assumed that once a �rm successfully develops a research step, it can either

keep the technology a secret or patent it. Patenting does not prevent the rival from developing

a non-infringing technology that serves the same purpose. In reality, the impact of patenting

on the rival�s progress would depend on the strength of patent policy. Stronger patent policy

would make it harder for rival �rms to invent around (Gallini, 1992).

This implies that the strength of patent policy can have an important impact on �rms�

sharing decisions. Hence, we next use our framework to analyze the impact of patent policy

on �rms�sharing decisions. Consider a variation of our basic model where �rms can choose

between a continuum of research paths. Di¤erent research paths are associated with di¤erent
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hazard rates. Firms still must incur a �ow cost c per unit of time if they decide to invest. If

�rm i decides to invest, it can choose a research path that yields a hazard rate �i 2 [0; �]. We

assume that the research paths can be ranked in terms of their quality (i.e., how promising

they are) and that both �rms rank the steps in the same way. Hence, � represents the hazard

rate that is associated with the most promising research path.38

Clearly, if all of the research paths are available, the �rms would choose the research path

that yields the highest hazard rate, �, at the beginning of the race. After one of the �rms is

successful, it patents the new technology. Patenting implies that if the rival continues to invest,

it must switch to a di¤erent research path, where it faces a lower hazard rate.39 Let �L denote

the maximum hazard rate that the lagging �rm can achieve without infringing the patent of

the leader. A stronger patent policy can be interpreted as corresponding to a lower �L. Hence,

we are interested in investigating how the sharing incentives change as �L decreases.

We divide the analysis into two parts depending on whether a strengthening in patent

policy changes the investment decision of the lagging �rm at any of the asymmetric histories.

If patent policy gets stronger without a¤ecting the dropping out decision of the lagging �rm

at any of the asymmetric histories, it can have two kind of e¤ects on the sharing incentives.

First, since a decrease in �L makes the lagging �rm less e¢ cient, it increases the bene�ts from

sharing. Second, since a decrease in �L strengthens the leader�s position, it increases the costs

of sharing. The �rst e¤ect dominates everywhere in Region B. It also dominates in Region A

for su¢ ciently small changes in patent policy. For larger changes in patent policy (i.e., larger

decreases in �L), the second e¤ect dominates because the rival becomes considerably weaker.

If a strengthening in patent policy increases the set of histories where the lagging �rm

drops out, then sharing incentives in general get weaker. This is because as patent policy gets

stronger, the position of the lagging �rm gets weaker and it is more likely to drop out. This

reduces the sharing incentives.

However, this reasoning does not apply in the case when a strengthening in patent policy

causes the lagging �rm to drop out at (2; 1) and (1; 2). In this case, the incentives to share

step 1 at the histories (1; 0), (0; 1), (2; 0) or (0; 2) may get stronger relative to the case when

38Derivations of the results in this section are available on request.
39Note that due to the memoryless nature of the Poisson discovery process, such switching can happen

independent of the lagging �rm�s initial choice of research path.
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the lagging �rm would not drop out at (2; 1) and (1; 2).40 This is because if the lagging �rm

will not drop out at (2; 1) and (1; 2), the leader chooses not to share the �rst step in order to

prolong the time period during which it can potentially earn monopoly pro�ts. If the lagging

�rm will drop out at (2; 1) and (1; 2), the �rm that �rst successfully develops the �rst step

does not have to protect itself by not sharing.

9 Conclusion

The paper considers the optimal pattern of knowledge sharing in the context of technological

competition. Developing a theoretical foundation for optimal sharing strategies has important

implications for the design of optimal as well as e¢ cient research environments.

We have analyzed how the incentives to share change over time as a research project reaches

maturity. The decision to share and the pattern of sharing activities critically depend on the

lagging �rm�s incentives to stay in the race in case of no sharing. The results reveal under

rivalry, the incentives to share intermediate research outcomes decreases monotonically with

progress if the lagging �rm is expected never to drop out. The incentives to share are higher

earlier on because there is more uncertainty earlier on. Sharing has a smaller impact on each

�rm�s chance of being a monopolist at the end of the race.

In many models of R&D, there is an assumption that �rms share at an early research stage

but not at a later one. This result shows that this sharing pattern can be derived from the

optimizing behavior of �rms in a dynamic game where the research technology does not change

over time.

If the lagging �rm is expected to drop out, the incentives to share may increase with

progress. This is because earlier in the research process the lagging �rm may have a higher

incentive to drop out and, hence, the leading �rm may have a higher chance of eliminating

rivalry by not sharing.

An analysis of the impact of patent policy on �rms�sharing decisions reveals that sharing

incentives in general get weaker if a strengthening in patent policy causes a change in the

investment decision of the lagging �rm at any of the asymmetric histories. Otherwise, shar-

ing incentives generally get stronger. The framework can also be used to analyze whether

40More speci�cally, this is the case for su¢ ciently high values of �M .
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patentability of intermediate research outcomes is desirable and under what circumstances a

more tolerant treatment of research collaborations may be desirable.

28



References

[1] Aghion, P. and J. Tirole. 1994a. "The Management of Innovation," Quarterly Journal of

Economics, 109(4), 1185-1209.

[2] Aghion, P. and J. Tirole. 1994b. "Opening the Black Box of Innovation," European Eco-

nomic Review, 38, 701-710.

[3] D�Aspremont, C., S. Bhattacharya and L.-A. Gerard-Varet. 2000. "Bargaining and Sharing

Innovative Knowledge," Review of Economic Studies, 67, 255-271.

[4] D�Aspremont, C. and A. Jacquemin. 1986. "Cooperative and Noncooperative R&D in

Duopoly with Spillovers," American Economic Review, 78(5), 1133-1137.

[5] Bhattacharya, S. and D. Mookherjee. 1986. "Portfolio Choice in Research and Develop-

ment," Rand Journal of Economics, 17(4), 594-605.

[6] Cabral, L. M. B. 2003. "R&D Competition When Firms Choose Variance," Journal of

Economics and Management Strategy, 12(1), 139-150.

[7] Cardon, J. H. and D. Sasaki. 1998. "Preemptive Search and R&D Clustering," Rand

Journal of Economics, 29(2), 324-338.

[8] Dasgupta, P. and E. Maskin. 1987. "The Simple Economics of Research Portfolios," The

Economic Journal, 97, 581-595.

[9] Green, J. and S. Scotchmer. 1995. "On the Division of Pro�t in Sequential Innovation,"

Rand Journal of Economics, 26, 20-23.

[10] Grossman, G. M. and C. Shapiro. 1986. "Optimal Dynamic R&D Programs," Rand Jour-

nal of Economics, 17(4), 581-593.

[11] Grossman, G. M. and C. Shapiro. 1987. "Dynamic R&D Competition," Economic Journal,

97(386), 372-387.

[12] Judd, K. L. 2003. "Closed-Loop Equilibrium in a Multi-Stage Innovation Race," Economic

Theory, 21, 673-695.

29



[13] Kamien, M. I. 1992. "Patent Licensing," in R. J. Aumann and S. Hart (eds.), Handbook

of Game Theory with Economic Applications, Volume 1, Elsevier Science.

[14] Kamien, M. I., E. Muller and I. Zang. 1992. "Research Joint Ventures and R&D Cartels,"

American Economic Review, 82(5), 1293-1306.

[15] Katz, M. L. 1986. "An Analysis of Cooperative Research and Development," Rand Journal

of Economics, 17(4), 528-542.

[16] Katz, M. and C. Shapiro. 1985. "On the Licensing of Innovations," Rand Journal of

Economics, 16, 504-520.

[17] Katz, M. and C. Shapiro. 1986. "How to License Intangible Property," Quarterly Journal

of Economics, 101, 567-589.

[18] Khanna, T. 1998. "The Scope of Alliances," Organization Science, 9(3), 340-355.

[19] Khanna, T. and M. Iansiti. 1997. "Firm Asymmetries and Sequential R&D: Theory and

Evidence from the Mainframe Computer Industry," Management Science, 43(4), 405-421.

[20] Klette, T. and D. de Meza. 1986. "Is the Market Biased Against Risky R&D?" Rand

Journal of Economics, 17(1), 133-139.

[21] Lee, T. and L. L. Wilde. 1980. "Market Structure and Innovation: A Reformulation,"

Quarterly Journal of Economics, 94(2), 429-436.

[22] Majewski, S. 2004. "How Do Consortia Organize Collaborative R&D? Evidence from the

National Cooperative Research Act," Harvard Law School, Olin Center for Law, Eco-

nomics, and Business, Discussion Paper No. 483.

[23] Oxley, J. and R. Sampson. 2004. "The Scope and Governance of Knowledge-Sharing Al-

liances," Strategic Management Journal, 8-9, 723-750.

[24] Reinganum, J. 1989. "The Timing of Innovation," in R. J. Aumann and S. Hart (eds.),

Handbook of Industrial Organization, Volume 1, Elsevier Science.

[25] Scotchmer, S. and J. Green. 1990. "Novelty and Disclosure in Patent Law," Rand Journal

of Economics, 21(1), 131-146.

30



[26] Severinov, S. 2001. "On Information Sharing and Incentives in R&D," Rand Journal of

Economics, 32(3), 542-564.

[27] Shapiro, C. 1985. "Patent Licensing and R&D Rivalry," American Economic Review,

75(2), 25-30.

31



Appendix

A Proof of Proposition 1

We solve the model under the assumption that the two �rms maximize their joint payo¤s. We

derive continuation pro�ts at each history working backwards through the decision nodes.

At (2; 2), the �rms cooperate in the output market to earn the joint �ow pro�t �J forever.

Recall that �J � maxf2�D; �Mg so that pro�ts in the output market are greatest when the

�rms produce cooperatively. The joint continuation pro�ts are:

VJ(2; 2) =
�J

r
= e�J

At the histories41 (2; 1) and (2; 0); the leading �rm shares all available research with the lagging

�rm. This prevents the wasteful duplication of R&D. The �rms then cooperate in the product

market to earn joint continuation pro�ts of e�J . Thus, we have that
VJ(2; 1) = VJ(2; 0) = VJ(2; 2) = e�J

At the history (1; 1), if neither �rm invests, the joint continuation pro�ts are 0. If one �rm

invests (either �rm), then the �rm invests a �ow cost of c and in each instant the probability

of success is �. When the success arrives, the �rms share the research and cooperate in the

product market to earn �ow pro�ts of �J : At (1; 1); the joint continuation pro�ts are:

VJ (1; 1) =

Z 1

0
e�(�+r)(�e�J � c)dt = �e�J � c

�+ r

If both �rms invest, then each �rm incurs a �ow cost of c and the �ow probability that at least

one �rm succeeds is 2�:The joint continuation pro�ts are:

VJ (1; 1) =

Z 1

0
e�(2�+r)(2�e�J � 2c)dt = 2�e�J � 2c

2�+ r
(1)

Given these payo¤s, the �rms will either both invest or both not invest. The �rms invest if

and only if V J(1; 1) � 0: This occurs42 if and only if e�J � c
� :

41The histories (1; 2) and (0; 2) are analyzed in the same way as (2; 1) and (2; 0):We do not repeat the analysis
here.
42For simplicity (but with some abuse of notation), we ignore non-generic parameters such that some �rm is

indi¤erent between two actions, as would be the case here if e�J = c
�
:
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Working backwards, we reach the history (1; 0). As at (2; 0) and (2; 1); sharing eliminates

wasteful duplication of R&D. Because the �rms make decisions cooperatively, there is no cost

to them to sharing. Sharing either strictly increases their joint continuation pro�ts or has

no e¤ect on the pro�ts because the �rms are in any event exiting the race. Without loss of

generality, we will assume that the �rms share at (1; 0).

Finally, we consider the history (0; 0): If neither �rm invests, their joint continuation pro�ts

are 0: If both �rms invest, then their joint continuation pro�ts are:

VJ (0; 0) =

Z 1

0
e�(2�+r)(2�VJ (1; 1)� 2c)dt =

2�VJ (1; 1)� 2c
2�+ r

The continuation pro�ts depend on whether the �rms invest at (1; 1): If the �rms do not invest

at (1; 1); then they clearly will not invest at (0; 0). If the �rms invest at (1; 1); then they invest

at (0; 0) if and only if VJ (0; 0) � 0. This is the case if and only if VJ (1; 1) � c
� : Using the

expression for VJ (1; 1) above, we �nd that the �rms invest at (0; 0) if and only if �
J � cr

� and

�J � 2cr

�
+
cr2

2�2
.

The last inequality above implies the inequality �J � cr
� . Thus, this inequality is a necessary

and su¢ cient condition for both �rms to invest at (0; 0): If the �rms invest, then their joint

continuation pro�ts are

VJ (0; 0) =
2�VJ (1; 1)� 2c

2�+ r
=

4�2

r(2�+ r)2
�J � 2(4�+ r)

(2�+ r)2
c.

B Proof of Lemma 1

In a companion appendix that is available on request, we analyze all the equilibria of the

game. That analysis also proves the lemma. Here we take a di¤erent approach. We focus on

the payo¤ that a �rm would earn by conducting two steps of research on its own and then

producing in the output market as a duopolist. This payo¤ is necessarily a lower bound on

any �rm�s payo¤ at any history and in any equilibrium. This is because a �rm always has an

option to complete two steps of research on its own to earn duopoly pro�ts or greater in the

output market. We claim that in Region A, the payo¤ of the lagging �rm at (2; 0; NS) equals

this payo¤. To see this, consider the decisions of the lagging �rm beginning at (2; 0; NS). By

the de�nition of Region A, the �rm does not drop out of the game at (2; 0; NS). Instead, it
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completes the �rst step of research on its own to arrive at (2; 1). The �rms may or may not

share step 2 at (2; 1): Either way, because the lagging �rm has no bargaining power its payo¤

is the same as its payo¤ at (2; 1; NS): In Region A, the lagging �rm does not drop out at

(2; 1; NS). Instead, it completes the second step of research on its own to arrive at (2; 2). At

(2; 2);the �rm is a duopolist. This shows that the payo¤ of the lagging at (2; 0; NS) equals

the payo¤ to a �rm of conducting two steps of research on its own and then producing in the

output market as a duopolist.

We �nish the lemma by computing the payo¤ to a �rm of conducting two steps of research

and then producing in the output market as a duopolist. We work backwards through time to

compute the payo¤.

After completing the two steps of research, the �rm produces output as a duopolist to

earn e�D = �D

r . Working backwards, suppose the �rm has completed one step of research. To

complete the second step of research, the �rm invests a �ow cost of c and in each instant the

probability of success is �. The �rm�s expected payo¤ isZ 1

0
e�(�+r)(�e�D � c)dt = �e�D � c

�+ r

Again, working backwards, consider the �rst step of research. The �rm again invests a �ow

cost of c and in each instant the probability of success is �. The �rm�s expected payo¤ is

Z 1

0
e�(�+r)(�[

�e�D � c
�+ r

]� c)dt =
�[�e�D�c�+r ]� c

�+ r
:

This payo¤ is strictly positive if and only if

�D >
cr

�
(2 + r=�):

This is the inequality that de�nes Region A.

C Proof of Proposition 2 and Proposition 3

We solve for the equilibria of the game for all parameter values in the companion appendix to

this paper that is available on request. That analysis proves propositions 2 and 3. Figure 2

illustrates the equilibria for an example with non-monotonicities in some regions. For readers

who do not wish to read the companion appendix, we show how to derive one of the equilibria

below. The equilibria for other parameter values are solved similarly.
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D Derivation of a Non-Monotonic Equilibrium

We solve the game in the following region of parameters: cr� (
3
2 +

r
2�) < �D < cr

� (2 +
r
�) and

2�D(2�+2r2�+r ) + c(
2r

2�+r ) < �M < 2�D + c. This is a subregion of region B. A straightforward

calculation43 shows that the region is non-empty if and only if r� <
1
2(
p
5�1) where 12(

p
5�1) '

0:62. The equilibrium is also derived in the companion appendix to this paper, where the region

is labeled Region 6.

To �nd an equilibrium, we work backwards from the end of the game. We derive the

continuation pro�ts at each history and solve for the equilibrium actions. At asymmetric

histories such as (2; 1) and (1; 2), the analysis of the game is the same so we analyze only one

of the histories.

The last history is the history (2; 2). At this history, the �rms have two successes

each and are done with the research. They produce output and each earns discounted

duopoly pro�ts of Vi(2; 2) = e�D = �D

r .

Working backwards, the next history is (2; 1; NS): Firm 1 is �nished with its re-

search and produces output. Firm 2 has 1 success, and the �rms have declined to share.

Firm 2 decides whether or not to invest in step 2. If �rm 2 invests, then its continuation pro�t

is

V2 (2; 1; NS) =

Z 1

0
e�(�+r)(�V2(2; 2)� c)dt =

�e�D � c
�+ r

: (2)

This payo¤ is positive because by assumption

�D >
cr

�

Hence �rm 2 invests at (2; 1; NS). Firm 1 earns monopoly pro�ts until �rm 2 completes the

second step. The continuation pro�t of �rm 1 is

V1 (2; 1; NS) =

Z 1

0
e�(�+r)(�M + �V1(2; 2))dt =

�M + �e�D
�+ r

> 0:

The �rms share at (2; 1) i¤ this maximizes their joint pro�ts. Their joint pro�ts under

sharing are

VJ(2; 2) = V1(2; 2) + V2(2; 2) = 2e�D = 2�D

r

43This deriviation is available on request.
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since when the �rms share, the game reaches the history (2; 2). Joint pro�ts under no sharing

are

V1 (2; 1; NS) + V2 (2; 1; NS) =
�M + 2�e�D � c

�+ r
:

We get S � NS ()

2e�D(�+ r) > �M + 2�e�D � c or
2�D + c > �M :

This condition holds in the region, and the �rms share step 2 at (2; 1).

At the history (1; 1), each �rm has one success. There is no sharing decision to be made.

The �rms must, however, decide whether to invest to develop the second step. Assuming �rm

1 invests, �rm 2 will also invest if

V2 (1; 1) =
�V2 (2; 1) + �V2 (1; 2)� c

2�+ r
=
�VJ (2; 1)� c
2�+ r

> 0

Since the �rms share at (2; 1); VJ (2; 1) = 2e�D: Substituting, we get
V2 (1; 1) =

2�e�D � c
2�+ r

> 0 (3)

This simpli�es to

�D >
cr

2�
:

This condition holds in the region, so �rm 2 invests. Hence, each �rm invests at (1; 1) if the

other does. If �rm 1 does not invest at (1; 1), the new history is (X; 1). Firm 2 invests if

V2 (X; 1) =
�V2 (X; 2)� c

�+ r
=
�e�M � c
�+ r

> 0 (4)

where V2 (X; 2) = e�M because at (X; 2); �rm 2 produces output as a monopolist. The

condition simpli�es to �M > cr
� . The condition holds because �

M > �Dand in this region

�D > cr
� . Hence, �rm 2 invests at (X; 1). It follows that both �rms invest at (1; 1).

At the history (2; 0; NS), �rm 1 produces output. The �rms have decided not to

share. Firm 2 invests i¤

V2 (2; 0; NS) =
�V2 (2; 1)� c

�+ r
> 0:
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Since the lagging �rm has no bargaining power, its earnings under sharing are the same as its

earnings under no sharing at the history (2; 1): The earnings under no sharing, V2 (2; 1; NS) ;are

given in (2). Substituting and rearranging gives us

V2 (2; 0; NS) =
�2e�D � c(2�+ r)

(�+ r)2
> 0 or

�D >
cr

�
(2 +

r

�
):

This condition fails in the region, so �rm 2 drops out at (2; 0; NS): (This result also follows

from Lemma 1.)

To see whether the �rms share step 1 at (2; 0); we compare the joint pro�ts under sharing

with joint pro�ts under no sharing. Joint pro�ts under sharing are VJ (2; 1) = 2e�Dsince if the
�rms share, the game reaches the history (2; 1) and the �rms share step 2. Joint pro�ts under

no sharing are VJ (2; 0; NS) = V1 (2; X) = e�M since �rm 2 drops out of the game if the �rms

do not share. In this region, we have that �M > 2�D: Hence, the �rms do not share at

(2; 0). The lagging �rm then drops out of the game.

Working backwards from either (2; 0) or (1; 1); we next consider the history (1; 0; NS). At

this history, �rm 1 has one success and �rm 2 has no successes and the �rms have decided not

to share. Each �rm must decide whether to invest. If �rm 1 invests, then �rm 2 also invests if

V2 (1; 0; NS) =
�V2 (1; 1) + �V2 (2; 0)� c

2�+ r
> 0 (5)

We can substitute for V2 (1; 1) from (3). Moreover, V2 (2; 0) = 0 since the �rms do not share

at (2; 0) and the lagging �rm drops out. Substituting and simplifying, (5) becomes

�D >
cr

�
(
3

2
+
r

2�
):

This holds in the region, so the lagging �rm 2 invests at (1; 0; NS) if �rm 1 does. It is

straightforward to show that the leading �rm 1 invests at (1; 0; NS) if �rm 2 invests. If �rm 2

does not invest, then the history becomes (1; X) and the leading �rm invests as showed above.

It follows that the leading �rm invests at (1; 0; NS) whether or not the lagging �rm invests.

Thus, both �rms invest at (1; 0; NS).

To see whether the �rms share step 1 at (1; 0); we compare joint pro�ts under sharing with

joint pro�ts under no sharing. If the �rms share, the game reaches the history (1; 1): Hence,
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joint pro�ts are VJ(1; 1):Joint pro�ts under no sharing are

VJ (1; 0; NS) =
�VJ (2; 0) + �VJ (1; 1)� 2c

2�+ r
=
�e�M + �VJ (1; 1)� 2c

2�+ r
: (6)

We have NS � S ()

�e�M + �VJ (1; 1)� 2c > (2�+ r)VJ (1; 1)

Substituting for VJ(1; 1) = 2V2 (1; 1) from (3) and simplifying, we have

�M > 2�D(
2�+ 2r

2�+ r
) + c(

2r

2�+ r
)

This inequality holds in the region, so the �rms do not share at (1; 0).

At the history (0; 0), assuming �rm 2 invests, �rm 1 will also invest if

V1 (0; 0) =
�V1 (1; 0; NS) + �V1 (0; 1; NS)� c

2�+ r
=
�VJ (1; 0; NS)� c

2�+ r
> 0

Substituting using (6) and (3) and simplifying, this is

4��D + (2�+ r)�M >
cr

�2
(4�+ r)(2�+ r) + 2cr

Since �M > 2�D in this region, the condition holds if

(8�+ 2r)�D >
cr

�2
(4�+ r)(2�+ r) + 2cr

Since �D > cr
� (

3
2 +

r
2�) in this region, the condition holds if

(8�+ 2r)
cr

�
(
3

2
+
r

2�
) >

cr

�2
(4�+ r)(2�+ r) + 2cr:

This simpli�es to

2�(2�+ r) > 0

which always holds. Hence �rm 1 invests at (0; 0) if �rm 2 invests.

Assuming �rm 2 does not invest, the history becomes (0; X). Firm 1 invests if

V2(0; X) =
�V2(1; X)� c

�+ r
=
�(�e�M�c�+r )� c

�+ r
> 0

where we substituted for V2(1; X) using (4). Simplifying, we get

�M >
cr

�
(2 +

r

�
): (7)
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In this region, we have that

�M > 2�D and �D >
cr

�
(
3

2
+
r

2�
):

These two conditions together imply that (7) holds. Hence, �rm 1 invests at (0; X). It

follows that both �rms invest at (0; 0).

This completes the derivation of the equilibrium. The equilibrium is unique.

The equilibrium is non-monotonic because the �rms share at (2; 1) but not at

(1; 0). The histories (1; 0) and (2; 1) are both reached on the equilibrium path, so

the non-monotonicity arises on the equilibrium path.

E Proof of Proposition 4

A deriviation of all the equilibria of the game for N = 3 is available on request. That analysis

proves the proposition. Here we derive the condition given in the Proposition that de�nes

Region A. As in Lemma 1, we focus on the payo¤ that a �rm would earn by conducting three

steps of research on its own and then producing in the output market as a duopolist. By the

same reasoning as in Lemma 1, this payo¤ equals the payo¤ of the lagging �rm at (3; 0; NS)

and is a lower bound on any �rm�s payo¤ at any history and in any equilibrium. Therefore,

Region A is all of the parameters for which this payo¤ is positive.

We now compute the payo¤. Suppose that the �rm has completed the �rst step of research

on its own. As derived in Lemma 1, the �rm�s expected payo¤ from computing the two

remaining steps of research on its own is

Z 1

0
e�(�+r)(�[

�e�D � c
�+ r

]� c)dt =
�[�e�D�c�+r ]� c

�+ r
:

Working backwards, consider the �rst step of research. The �rm invests a �ow cost of c and

in each instant the probability of success is �. The �rm�s expected payo¤ is

Z 1

0
e�(�+r)(�[

�[�e�D�c�+r ]� c
�+ r

]� c)dt =
�[
�[�e�D�c

�+r
]�c

�+r ]� c
�+ r

:

This payo¤ is strictly positive if and only if

�D � cr

�
(3 + 3

r

�
+
r2

�2
):
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This is the inequality that de�nes Region A.
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