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Outline

• Introduction

• Lessons learned from research and training in 
forensic science

• Recent alumni careers

• A bit about our research products:
• Statistical tools implemented

• Directions for the future from lessons learned



Raising Standards with Data and 
Statistics

• DNA profiling the most successful application of 
statistics in forensic science.
• Responsible for current interest in “raising standards” of 

other branches in forensics.

• No protocols for the application of statistics to 
physical evidence.
• Our goal: application of objective, numerical 

computational pattern comparison to physical 
evidence



Learned Elements of Successful Research in 
Forensic Science 

• There must be a synergy between academics and 
practitioners!
• Practitioners have specialized knowledge of:

1. Technical problems in their fields
• Don’t dismiss their opinions for improving practice!
• Successful research products will have been borne out by 

treating practitioners as equal partners
• Co-PIs
• “Test subjects” on proposed research products

• My group has been involved with research and training in 
quantitative forensic science for about a decade.



3. Intricacies of implementing new technologies/S.O.Ps
• Lab’s have tight budgets: Consider equipment costs for 

purchase/maintenance/training 
• Realistic expectation for their staff’s: 

knowledge/training/capacities
• Will users need a PhD to do this??
• User interfaces are important!!

Learned Elements of Successful Research in 
Forensic Science 

• Practitioners have specialized knowledge of:

2. Intricacies of working within the criminal justice system
• Academics are largely self-managed. Practitioners must deal 

with attorneys/judges/court systems.



Learned Elements of Successful Research in 
Forensic Science 

• Successful  University research programs will ultimately 
involve:

1. “Well oiled” research teams of academics and 
practitioners with a proven dedication to research in 
forensic science.

2. Track-records of producing research products related to 
what was proposed to win the grant.



Learned Elements of Successful Research in 
Forensic Science 

• Funding sources should consider:

1. Significant PhD/D-Fos program start-up money for
• Curriculum development
• Teaching time/classroom space
• Research space
• Travel for dissemination of research products/training
• Equipment purchase/maintenance costs 

• Should be close monitoring of nascent PhD/D-Fos
program by funding source. 

• Top and middle administration must be involved and 
supportive for the long-term (10-15 years).



Learned Elements of Successful Research in 
Forensic Science 

• Funding sources should consider:

2. Accessibility/outreach of PhD/D-Fos program
• Research in forensic science must me disseminated!!

• Is the nearest airport to campus small and two hours away?
• Does campus have access to short term living facilities?

• Specialists to come and teach.
• Practitioner to come and take non-matric classes.

• What are the dedicated facilities for training on campus?

• Proximity to federal/state/local forensic laboratories and large 
metropolitan areas
• Sources of collaboration and external opportunities



• Federal, state and local public Crime laboratories
• Armed Forces DNA Identification Laboratory, Dover, DE; Center of Forensic Sciences, Toronto, Canada
• Contra Costa County Sheriff’s Department Forensic Division, CA
• Federal Bureau of Investigation Laboratory Division, Quantico, VA
• Los Angeles Police Department, Scientific Investigation Division, LA, CA
• Los Angeles Sheriff’s Department Laboratory, CA
• Nassau County Crime Lab, East Meadow, NY
• New Jersey State Police, Office of Forensic Sciences, West Trenton, NJ
• New York City Office of Chief Medical Examiner, NY; New York City Police Department Laboratory, Jamaica, NY
• Office of the Medical Examiner San Francisco, CA; Orange County Sheriff Department, Santa Ana, CA
• San Diego Police Department Laboratory, San Diego, CA
• Suffolk County Crime Lab, Hauppauge, NY
• United States Drug Enforcement Agency, Laboratory Division NY, NY
• United States Drug Enforcement Agency, Laboratory Division SF, CA; U.S. Postal Inspection Service, Forensic Laboratory, Dulles, VA
• Washington DC Department of Forensic Sciences, DC

Some of the Recent Career Tracks of John Jay Alumni

• Private Companies
• Antech Diagnostics, New Hyde Park, NY; Bode Technology, Lorton, VA
• Purdue Pharma, Totowa, NJ; Microtrace, Elgin, IL
• Quest Diagnostics, Madison, NJ
• Smiths Detection, Edgewood, MD; NMS Labs, Willow Grove, PA
• Core Pharma, Middlesex, NJ

• Academic and Research Institutions
• Central Police University of Taiwan
• California State University, Los Angeles, CA 
• Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 
• John Jay College, New York, NY
• Hawaii Chaminade University, Honolulu, HI; McMaster University, Hamilton, ON
• St. Xaviers College, Bombay, India
• Penn State, College Station, PA
• University of New Haven, New Haven, CT 
• University of West Virginia, Morgantown, WV
• University of Toronto, Canada
• Weill Cornell Medical College, New York, NY



• All forms of physical evidence can be represented as numerical 
patterns
o Toolmark surfaces
o Dust and soil categories and spectra
o Hair/Fiber categories
o Any instrumentation data (e.g. spectra)
o Triangulated fingerprint minutiae

• Machine learning trains a computer to recognize patterns
o Can give “…the quantitative difference between an identification and 

non-identification”Moran

o Can yield average identification error rate estimates
o May be even confidence measures for I.D.s*

Our Research products: 
Quantitative Criminalistics



Bullet base, 9mm Ruger Barrel

Bullets
LEA



9/11 DUST STORM

Taken by Det. H. Sherman, NYPD CSU 
Sept. 2001

Aggregate Trace: Dust/Soils

Taken by Det. N. Petraco, 
NYPD (Ret.)



• Modern algorithms that “make 
comparisons” and “ID unknowns” 
are called machine learning

• Idea is to measure 
features of the 
physical evidence 
that characterize it

• Train algorithm to 
recognize “major” 
differences between 
groups of features while taking into account 
natural variation and measurement error.

The ID-ing task



• Visually explore: 3D PCA of 760 real and simulated mean 
profiles of primer shears from 24 Glocks:

• A machine learning is then 
trained to I.D. the toolmark:

But…



How good of a “match” is it?
Conformal PredictionVovk

• Data should be IID but that’s 
it C
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80% confidence
20% error
Slope = 0.2 

95% confidence
5% error
Slope = 0.05 

99% confidence
1% error
Slope = 0.01 

”

Sequence of Unk Obs Vects

• Can give a judge or jury an easy to understand measure of 
reliability of classification result 

• This is an orthodox “frequentist
approach

• Roots in Algorithmic Information 
Theory

• Confidence on a scale of 0%-100%
• Testable claim: Long run I.D. error-

rate should be the chosen 
significance level



Conformal Prediction

Theoretical (Long Run) 
Error Rate: 5%

Empirical Error Rate: 5.3%

14D PCA-SVM Decision Model
for screwdriver striation patterns

• For 95%-CPT (PCA-SVM) confidence intervals will not 
contain the correct I.D. 5% of the time in the long run

• Straight-forward validation/explanation picture for 
court

cptIDPetraco for  



• An I.D. is output for each questioned tool 
mark
• This is a computer “match”

• What’s the probability the tool is truly the 
source of the tool mark?

• Similar problem in genomics for detecting 
disease from microarray data
• They use data and Bayes’ theorem to get an 

estimate

How good of a “match” is it?
Empirical Bayes



Empirical Bayes’
• Model’s use with crime scene “unknowns”:

This is the est. post. 
prob. of no association 
= 0.00027 = 0.027%

Computer outputs “match” for: 
unknown crime scene toolmarks-with knowns from “Bob the burglar” tools

This is an uncertainty 
in the estimate

fdrIDPetraco for :



Questioned samples (from flag) with
human remains compared to WTC dust ~ 
99.3% same source

Questioned samples (from flag) without
human remains compared to WTC dust ~ 
98.6% same source

WTC Dust Source Probability (Posterior)



Likelihood Ratios from Empirical Bayes
• Using the fit posteriors and priors we can obtain the likelihood ratios

Known match LR values

Known non-match LR values



Jerry Petillo

KM KNM

Typical “Data Acquisition” For Toolmarks

Jerry Petillo



Bayesian Networks
“Prior” network based on historical/available count data 
and multinomial-Dirichlet model for run length 
probabilities:

GeNIe



6x

5x

6x

4x

Known Unknown

Run Your “Algorithm”

1-4X, 1-5X, 2-6X



Enter the observed run length data for the comparison 
into the network and update “match” (same source) 
odds:Buckelton,Wevers,Neel;Petraco,Neel

1-4X0-2X 0-3X 1-5X 2-6X 0-9X0-7X 0-8X 0-10X 0-≤10X

LR = 96/3.8 ≈ 25

The evidence “strongly supports”Kass-Raftery that the striation patterns were made by the same tool



Where to Get the Model and Software

BayesFusion: http://www.bayesfusion.com/
SamIam: http://reasoning.cs.ucla.edu/samiam/
Hugin: http://www.hugin.com/
gR packages:  http://people.math.aau.dk/~sorenh/software/gR/

Bayes Net software: No 
cost for non-
commercial/demo use

http://www.bayesfusion.com/
http://reasoning.cs.ucla.edu/samiam/
http://www.hugin.com/
http://people.math.aau.dk/%7Esorenh/software/gR/


• Data! Working on a wavelet based simulator for 2D 
toolmarks:

Directions for the future

LH4

HL4 HH4

+

Simulate stochastic detail



Data!: Aggregate evidence dependencies

• Ising and Potts-like “spin” models: 
• Capture dependences between 

components of materials/trace evidence
• Simulate from model using standard 

Stat-Mech techniques 



General Weight of Evidence Evaluations: 

• Weight of evidence IMHO was canonically defined by Jefferys:

“Thermodynamic Integration” trick:

We can (in principle…) get these averages from MCMC for fixed β
from 0 to 1 and numerically integrate the aboveLartillot,Friel,Gelman

“Weight of evidence” = Bayes Factor



More Future Directions
• Clean up: cptID, fdrID
• GUI modules for common toolmark comparison 

tasks/calculations using 3D microscope data
• 2D features for toolmark impressions: feature2Petraco

• Parallel/GPU/FPGA implementation of 
computationally intensive routines e.g. ALMA 
Correlator for astronomy data
• Especially for retrieving “relevant pop/best match” 

reference sets 

• Uncertainty for Bayesian Networks
• Models, parameters…
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