HotSpot: A new breed of virtual machine - JavaWorld - March 1998

tl

http://www javaworld.com/javaworld/jw-03-1998/jw-03-hotspot_html

March 1998 P wond § Get FREE JW e-mail alerts

| J\W @ | searen | IEACEO| Wews & views || JAVA RESOURCES |

. Build Your Java Apps C‘?MD'SCO’

vovovcomdisco.com

HotSpot: A new breed of virtual machine

Sun's next-generation dynamic compiler generates bytecodes that scream

Summary

Sun's HotSpot technology promises to deliver interpreted bytecodes that run faster than a
compiled program! Is such a thing possible? Apparently. HotSpot combines a Java virtual
machine (JVM) and a compiler in a unique new way that up until now has existed only in
universities. The result is a powerful new technology that threatens to blow the doors off
language performance as we know it. Find out about the inner workings of Sun's dynamic
compiler, and learn which kinds of applications are -- and are not — more effective with
HotSpot than with the fastest JIT. Plus: Primers compare HotSpot technology to its
predecessors -- standard VMs, compilers, and just-in-time compilers. (4,000 words)

By Eric Armstrong

Starting line: Warming up the engines

Lord knows, interpreters are slow. Pre-compiling Java source code into portable
bytecodes saves the time needed for translating syntax, but interpreting
bytecodes in the Java virtual machine (VM) is still exceedingly slow compared
to the native code produced by a compiler. Thus, Java performance is generally
deemed acceptable for small applets but not for any sizable application.

A just-in-time compiler (JIT) runs many times faster than an interpreter. It
makes a drastic, noticeable difference when you're running even an interactive

Mail th

article

[=31{7]

a friend

= GOVERNMENT
EXHIBIT

e -

1YAINC Q.&N ANA

-

WSpot: A new breed of virtual machine - JavaWorld - March 1998 http://www javaworld com/javaworld/jw-03-1998/jw-03-hotspot html

application. Although a JIT falls short of compiled-code speeds, it greatly Advertisements
extends Java's applicability. But a reasonably-performing application is still
compute-limited. As long as the app mostly interacts with the user or does I/O,
it's fine. But if it starts doing a lot of graphic processing or extensive
computing, performance rapidly drops to unacceptable levels.

Sun's new HotSpot technology, due to ship this summer (with a developer
release due sooner), is a dynamic compiler -- a compiler built into the virtual
machine that promises to run as fast or faster than compiled code in the
majority of applications. HotSpot promises to extend Java's applicability into a
wide variety of areas, from servers to mainstream desktop applications —
without sacrificing portability. Sun's Java roadmap indicates a HotSpot JVM
developer's release was scheduled to be available early in the first quarter of
this year; a deployable HotSpot JVM implementation is scheduled to ship this
summer.

This article explores the inner workings of Sun's dynamic compiler, HotSpot,
and details the kinds of applications in which HotSpot is — and is not — more
effective than the fastest JIT. (For more information on compilers and
interpreters, see the sidebar How compilers and interpreters work. To find out
how a JIT improves performance, see the sidebar How a JIT works.) .

They're off!: Burning rubber with dynamic compilation :
HotSpot is a dynamic compiler. It combines the best features of a JIT compiler
and an interpreter, combining the two in a single package. That two-in-one
combination provides a number of important benefits for code performance, as
you will shortly see.

For all of its apparent newness, the concept of dynamic compilation is based on OB J ECT
research done over the past 10 years at Stanford University and the University
of California, Santa Barbara (UCSB). So the technology is actually fairly
stable, but it's HotSpot that has propelled dynamic compilation into the
limelight. And, in addition to dynamic compilation, there are two other major
time-sinks that HotSpot addresses: garbage collection and synchronization.

The cost of computing: garbage collection and synchronization
Unfortunately, in the majority of applications, optimizing Java code is not all —
there is to improving performance. Some of the same features that help Java %e—”—'st- n
developers increase productivity and write more versatile, bug-free applications intormation
also consume mass quantities of runtime compute cycles. The major
cycle-stealing features are garbage collection and threads. As the pie chart
below shows, together these two features take up about 40 percent of the

average application's run time.

Java's built-in garbage collection eases the programming burden tremendously.
It all but eliminates those "memory leaks" that used to freeze up a system when
a program kept allocating memory without releasing it, until there was no
longer any room for the system to do anything. But garbage collection takes
time. Optimizing the application's bytecodes with a JIT has no effect at all on
the virtual machine's garbage collector. It still has to spend the time to-do its
thing. In fact, some applications allocate and release memory so frequently that
the time spent in garbage collection dwarfs the time spent in the application itself. In such cases,
optimized application code is of little value.

{otSpot: A new breed of virtual machine - JavaWorld - March 1998

Running Native
Thread Methods
Synchronization 1%
19%

Allocstion & Byte code
Garbage Collection Interpretation
20% 60%

This pie chart shows average garbage collection,
synchronization, and run times for typical
applications. It is based on a slide from Sun

Microsystems, but with numbers rounded to make
the trends stand out. Note that some apps can
spend virtually all of their time in
garbage collection and/or synchronization, while
others may spend virtually no time on such tasks.
These are average figures.

allocated storage has two important benefits. This

http://www javaworld.com/javaworld/jw-03- 1998/jw-03-hotspot.htm]

The other major drain on system resources is thread
synchronization. Java's threads (concurrently
executing code segments) provide a lot of flexibility.
For example, threads allow buffering input to improve
performance, and let developers write a server app that
services multiple clients simultaneously. But
synchronization takes time, a surprising amount of
time -- in fact, nearly 20 percent of a normal
application's CPU time. Furthermore, that 20 percent
is time that can't be optimized by compiling the
application's code.

In addition to dynamic compilation, HotSpot uses an
improved method of garbage collection called
generational garbage collection. This technique has
seen a lot of academic work, but is now finding a
major application in the Java language. The idea
behind generational garbage collection is that memory
tends to be allocated, and then discarded, in
chronological groups.

Dividing the code into different "generations" of
technique allows the garbage collector to work

incrementally. Instead of traversing all of memory at one time -- which can bring the application to a
screeching halt - the generational collector can traverse smaller groups of allocations. So it runs

frequently, doing a little a time, and therefore has

a much less noticeable effect on performance. This is

especially important for interactive applications, where users prefer predictable performance to erratic
behavior. In addition, the process streamlines the garbage collection process so that it occurs more

quickly.

HotSpot also improves the synchronization process. In many cases, what used to be multiple lines of
synchronization code has been reduced to a single instruction. So using multiple threads in an

application has virtually no penalty.

Together, improved garbage collection and synchronization can make a drastic difference in an
application’s runtime -- even without optimizing the application code. But this article is about how
dynamic compilation works, so lets get on with that.

How the dynamic compiler works

HotSpot includes both a dynamic compiler and a virtual machine to interpret bytecodes, as shown in the

following figure.

TAIAINO 0.EN ARK

lotSpot: A new breed of virtual machine - JavaWorld - March 1998 http://www.javaworld.com/javaworld/jw-03-1998/jw-03-hotspot.html

Program
source

Dynamic
Compiler

Native A Virtual

ET T — ‘s Machine
Code - b

Prbﬁler

The dynamic compiler inciudes both a compiler and an interpreter. The bytecodes produced by the Java compiler
(JavaC) are first interpreted in the virtual machine. As they run, the profiler keeps track of performance
information, and selects a method for compilation. Compiled methods are stored in a cache of native machine code.
When a method is invoked, the native machine-code version is used, if it exists. Otherwise, the bytecodes are
reinterpreted. The "control” function shown in the diagram is likely to be an indirect jump through a memory
location that points to either the native code or the interpreter. (Details have not been disclosed, but such an

implementation is likely.)

When bytecodes are first loaded, they are run through the interpreter. The profiler keeps a record of
runtimes for each method. When a method is found to be taking a lot of time, HotSpot compiles and
optimizes it. Every future call to that method uses the native machine instructions produced by the
compiler.

As with a JIT, the results of the compilation are not kept between runs. Because the bytecodes are more
compact, this saves loading time as well as storage space. It also retains portability, and allows the
optimization to reflect the way the program is currently being used. Currently, no attempt is made to
save information that might help future runs become efficient more quickly. Although this approach may
be a future possibility, Sun has no such plans at this time.

Profiling and compiling heuristics

The most fascinating aspect of the whole system (to anyone interested in the subject of machine
reasoning, at least) is how the profiler decides which methods to optimize. At present, the system uses a
very minimal heuristic that does not involve any sort of artificial intelligence. Although the exact details
are proprietary, it's reasonable to suppose that the system predicts the time it will take to optimize a
given method. Once the time spent mn that method reaches a predefined threshold set at, say, 70 percent
of the predicted optimization time, it becomes a candidate for optimization. (The exact threshold is
undoubtedly the result of a considerable amount of research.) :

Fortunately, say the folks at Sun, it's unnecessary for such a system to be perfect. As long as it's right
most of the time, it can make an astonishing difference in how a program runs.

And, who knows? There is always the possibility that some day more advanced artificial intelligence
heuristics can be used. There are no firm plans to pursue this possibility -- the company expects to have
its hands full refining its current implementation over the next year or two -- but it's an interesting
possibility to consider.

The advantages of dynamic compilation

The beauty of integrating a compiler with an interpreter is that it can do things a normal static compiler
simply can't do. In particular, it can perform optimistic compilation and take advantage of runtime
information to do robust inlining. -

A _rva VHIAIO0 0. 8N AN

iotSpot: A new breed of virtual machine - JavaWorld - March 1998 http://www javaworld.com/javaworld/jw-03-1998/jw-03-hotspot.html

Optimistic compilation

Because the interpreter is always available to run the bytecodes, HotSpot's dynamic compiler can
assume that exceptions and other hard-to-optimize cases don't happen. If they do, HotSpot can revert to
interpreting the bytecodes. For a static compiler, optimizing in a way that handles all the unusual cases is
a very difficult and time-consuming process. By ignoring those cases, HotSpot can rapidly produce
highly optimized code for the code that is most likely to run. That produces a lot of bang for the buck --
significant performance improvement for a small investment in optimization time.

Runtime information

The second major advantage of dynamic compilation is the ability to take into account information that
is known only at runtime. Again, the details are proprietary. But it's not hard to imagine, for example,
that if a method is invoked in a loop that has an upper index value of 10,000, it's an immediate candidate
for optimization. If, on the other hand, the upper loop index value is 1, the optimizer will know to ignore
that method and let it be interpreted. Because a static compiler has no way of knowing for sure what the
values might be, it can't make such judgements.

Inlining

One of the important optimizations HotSpot performs is inlining frequently-called methods. That means
that instead of being invoked with the overhead of a method call, the method's code is copied into the
calling routine and executed as though it had been coded there. The smaller the method, the more sense
inlining makes. A one-line method might spend more than twice as much time-entering and exiting the
routine as it does executing.

Inlining provides a tremendous boost in performance, but it has a size penalty. If every method in a
program were copied to every place it was called from, the program would balloon to five or ten times
its original size. But HotSpot optimizes only the critical sections of a program. The 80/20 rule says that
80 percent of a program's runtime is spent in 20 percent of the code. By inlining as much as possible of
that 20 percent, HotSpot can achieve a significant boost in performance with an acceptable size penalty.
Here, runtime information makes a big difference, because HotSpot knows where to find that critical 20
percent.

As with all good things, of course, there are tradeoffs. If a method is very large, the time spent entering
and exiting it is only a small fraction of its execution time. In such a case, the space required to duplicate
the method may not compare favorably to the time saved by inlining. So HotSpot undoubtedly has an
upper limit on how large an inlined method can be. (The exact details, however, are proprietary.)

Finally, because HotSpot does optimistic compilation, it can inline only the normally-executing
methods, instead of every possible method. So it can ignore difficult cases that rarely occur instead of
working hard to resolve them. That way, you get the maximum performance payoff for the minimum
optimization effort.

When dynamic compilation succeeds — and when it doesn't

In the large majority of cases, HotSpot provides an extreme performance advantage over JIT technology,
not to mention normal JVM interpretation. But, as with any performance-enhancing technology, the
HotSpot dynamic compiler fails to achieve optimum performance in distinct cases. For example, the
profiler might decide to optimize a piece of code just as it finished executing for the last time. In an
extreme case, the optimizer could conceivably run around optimizing every method just as it finished
executing for the last time, which obviously wouldn't work out at all. Fortunately, such cases are rare.

HotSpot would perform badly in a 100 percent compute-bound application with little or no garbage
collection, no thread synchronization, and very small amounts of initialization code. An example of such
an application might be one that multiplied the first 1,000 prime numbers together and displayed the
result. For such a program, a good JIT would provide superior performance because the JIT doesn't wait
before optimizing -- it optimizes everything preemptively.

And, finally, HotSpot technology falls short in an artificial benchmark like the CaffeineMark. Because

such benchmarks do not emulate real-world programs, it's possible to write a compiler that detects the
nonsense cases (such as do-nothing loops) and optimizes them away. Such a compiler can produce

~aa 1NIAINQ C-CN AN

lotSpot: A new breed of virtual machine - JavaWorld - March 1998 http://www.javaworld.com/javaworld/jw-03-1998/jw-03-hotspot html

extremely fast benchmark times that are not reflected in production programs. A compiler that doesn't
optimize these weird cases may look bad by comparison, even if it's better in the real world. (Sun
recently demonstrated this point by designing a compiler that specifically "optimized" these benchmarks
down to a near-nothing program that ran in basically zero time. Although their attempt backfired in the
public opinion polls, it made a strong statement that such benchmarks may not make very reliable
measures of performance.)

As with any performance-enhancing technology, the bottom-line question is: How well does it work for
your application? In the vast majority of normal applications, where garbage collection and thread
synchronization occur and where real code repeats, the HotSpot approach provides a dramatic
performance boost.

How HotSpot compares to native code

In this article, we've been comparing dynamic compilation to other ways of processing Java code. But
we've always compared one form of Java to another. The skeptics in the audience are crying out, "Yeah,
but how well does it do compared to my favorite compiler?" The answer is that it compares very
favorably today, and it has an even more promising future. Sun has its sights set on achieving
performance levels that rival that of an optimized C program. Given time, Sun is confident it can come
close to that target.

At the moment, good JIT compilers meet or exceed the performance of static C++ compilers for
object-oriented programs, as described in Performance tests show Java as fast as C++. And HotSpot is
faster than a JIT. That's still not up to the performance of a compiled C program, but it's getting there.

Note: C++ can be used like Java to create an object-oriented program, or it can be used like
C to create very fast, non-object-oriented code. Today, Java compares very favorably to
C++ for an object-oriented program. But C++ can be optimized for performance with
C-style coding in ways that Java doesn't allow. This can make the code harder to maintain,
but very fast.

Finish line? The race has just begun!

HotSpot is the first working version of a dynamic compiler for the Java language. Correct operation has
been verified. The goal now is progressive refinement and enhancement, until absolutely optimal
performance is achieved. Sun believes that in the next several years it may even be able to approach the
speeds of an optimized C program!

The outlook is exciting. The prospect of platform-independent code that outperforms even native
optimizers holds out the possibility that, over the next few years, the Java language will become a
realistic candidate for virtually every type of application. It's not just for applets anymore! m

| Also this month in JavaWorld [+1[Gol

C<§~‘:Mnlsc0°

vovnvcomadizco.com

- Build Your Java Apps

Resources

« For further information on HotSpot and architecting your applications for maximum performance,
see
http://java.sun.com/javaone/sessions/slides/TT06/title.htm]

« See the results of the JavaWorld poll "What do you think of Sun's possible decision to sell its
HotSpot high-speed compiler separately (instead of including it in the next version of the JDK)?"
http://nigeria.wpi.com/cgi-bin/gwpoll/gwpoll/past.html

« For further information on generational garbage collection, see:

Fa R R 17/4108 R-50 AM

lotSpot: A new breed of virtual machine - JavaWorld - March 1998 http//www.javaworld.com/javaworld/jw-03-1998/jw-03-hotspot.htm]

o http://www.dcs.gla.ac.uk/~sansom/1993 gen-gc-for-haskell.html
o http://csgrad.cs.vt.edu/~groener/courses/briefing.shtml

« For further information on thread synchronization, see:
o http://www javaworld.com/jw-07-1997/jw-07-hood.html

o http://www.math.utah edu/java/native/implementing/threadsync.htmi}
o http://www javasoft.com/docs/white/langenv/Threaded.doc2.html

« To find how JITs stack up against C++, see Carmine Mangione's article, Performance tests show
Java as fast as C++.
http://www.javaworld.com/jw-02-1998/jw-02-jperf.html

o For further information on the Symantec JIT that is now included with the Windows version of the
Sun JDK, see
http://www.symantec.com/jit/jit_ readme.html

« For further information on Sun's JIT for Solaris, see
http://www.sun.com/solaris/jit/

» For Sun's Java roadmap, including the release schedule for HotSpot, see
http://www.sun.com/smi/Press/sunflash/9712/sunflash.971210.5.html

o For A PC Week news article discussing HotSpot and Sun's plans to sell it as a commercial
product, see :
http://www8.zdnet.com/pcweek/news/1215/15java.html

« For the transcript of a JavaOne '97 conference presentation titled "High Performance Java:
Programming Tips, Techniques and Choices" by Peter Kessler and David Griswold, see

http://sunsite.compapp.dcu.ie/ITUG/javaone/transcripts/perform.html

About the author

Eric Armstrong has been programming and writing professionally since before there were personal
computers. He has firsthand knowledge of HotSpot based in part on his current work as a contractor at
JavaSoft. His production experience includes artificial intelligence (AI) programs, system libraries,
real-time programs, and business applications in a variety of languages. He is a regular contributor to
JavaWorld, and the author of The JBuilder Bible, to be published by IDG Books this spring. Reach Eric

at eric.armstrong@javaworld.com.
| J\W A | searcn (|IETOOE] news & vitws || JAVA RESOURCES |

©1995.98 Web Publishing Ine. /IDG—Cliclk: for Trademarks & Noticos

If you have problems with this magazine, contact webmaster@javaworld.com
URL: http://www javaworld.com/javaworld/jw-03-1998/jw-03-hotspot.html
Last modified: Wednesday, September 02, 1998

How compilers and interpreters work
This section gives a historical overview of language compilers, interpreters, and bytecode interpreters.

Machine code and assembly language

At bottom, computers process only a very limited instruction set known as machine code. Machine-code
instructions are basically a series of numbers that have a particular meaning to the computer. Once upon
a time, programs were written into the computer's memory by flipping toggles on the front panel to
produce the appropriate series of numbers (instructions) for the computer to follow.

A major leap forward occurred when the computer was used to translate assembly language. An
assembly language is exactly like machine code, except that it uses alphabetic mnemonics like "LDA" to
load a value into the computer's internal accumulator, instead of a numeric instruction. There's still a
one-to-one correspondence between assembly language and machine-code instructions, but now the

- rae 1A 74100 Q.80 AN

{otSpot: A new breed of virtual machine - JavaWorld - March 1998 http://www javaworld.com/javaworld/jw-03-1998/jw-03-hotspot.html

computer does the work of assembling the program into machine code.

The figure below shows the result of a hypothetical translation where the machine code for Lpa is 1378,
accumulator (or register) "A" is number 00, and the variable "N" is at memory address 1000. The
example is only loosely related to anything that might exist in reality, but it shows how assembly
language instructions are related to machine code.

5 i

Assembly language statements are translated one-for-one into numeric machine code instructions.

How a static compiler works

The next major leap occurred when higher-level languages like C
and Pascal were invented. In these languages, one instruction can
translate into many lines of machine code. The translation
process for these languages is known as compilation. The goal is
the same: to produce machine code the computer can understand Compiler
out of a language that is readable enough for humans to work
with. But now humans are working with a higher-level language,
and machines are doing more work to accomplish the translation.

The results of multiple compilations are then linked together to

produce an executable program. At a minimum, you generally Linker
link your program with a previously compiled system library to :
produce an executable program, as shown in Figure N-N. hf
(Libraries also can be linked when the program runs. Such

libraries are known as dynamically linked libraries, or DLLs.) exe

There are basically four steps in the compilation process: The compiler translates higher-level
tokenizing, parsing, code generation, and optimization. In the St';ltlinlli:ll;::r“tliteos '&"mple instructions.
) . o0, . . gether the results
tokenizing step, individual items called fokens are recognized. of multiple compilations, including
For example, in the statement: if (myval == 123) {,the libraries of previously compiled routines,

individual tokens are if, (, myVal, ==, 123,), and {. to create an executable program.

In the parsing step, the individual tokens are combined into meaningful statements. If the statement
doesn't make any sense, the compiler generates an error message. But if the compiler recognizes the
statement, it can go on to the next step, code generation.

In the code-generation step, the appropriate machine code gets produced. (Note: Frequently, assembly
language is produced, which is then assembled to produce the machine code. But it amounts to the same
thing.) Once all the instructions have been generated, the compiler can begin the optimization process.
For example, one instruction might store a value in an internal register at 2 memory location. The next
instruction might read that very same value for use in another computation. The optimizer can spot the
inefficiency and simply reuse the value in the internal register, eliminating the extra read.

How a language interpreter works

TAraInO 0.0 AN

lotSpot: A new breed of virtual machine - JavaWorld - March 1998

Although it produces very efficient programs, a
compiler takes a while. And the better it optimizes, the
longer it takes. This is fine for production programs,
but it was a real problem for people who were learning
to program. They might have had to compile 30 or 40
times to make a small program run. With long compile
times, learning tended to be more frustrating than fun.

Languages like Basic solved the program by getting
the computer to act as an interpreter. Instead of
compiling a complete program into machine code and
then getting out of the way, the interpreter sits there in
a loop, looking for instructions. Each time it gets a
new instruction, it tokenizes the instruction, parses it, _
and then executes the machine code associated with The language interpreter is basically a big loop. It

that instructi . n the spot. gets an instruction, parses it, and executes it. Then
ction right o P it gets the next instruction, and continues that process

. . until it runs out of instructions or undl it
Command shells like DOS and CSH are interpreters processes an instruction telling it to stop.

that recognize a limited number of commands. The
interpreter's loop accepts a command, processes it, and then prompts you for another command. The
typical Basic language command interpreter operates the same way. .

One source of inefficiency you can see right off is that there is no way to optimize the resulting code.
Since each instruction is executed as it is seen, you might very well store a value in one instruction, only
to retrieve it in the next. In addition, such a pure interpreter tokenizes and parses every line that it sees.
That isn't too bad when you're processing a line at a time (like a command shell) or a very small
program, but it slows things down tremendously when you are processing a very large program.

How a byte-code interpreter works

P N N GG LY

http://www.javaworld.com/javaworld/jw-03-1998/jw-03-hotspot html

[4

l:)tSpot: A new breed of virtual machine - JavaWorld - March 1998 http://www.javaworld.com/javaworld/jw-03-1998/jw-03-hotspot html

Twenty years ago in San Diego, the University of California created
UCSD Pascal, which populanzed the system that Java uses today. This
system makes interpretation more efficient by using a byte-code
interpreter. The following figure shows how a byte-code interpreter
works.

With this system, a program is first translated into a series of bytecodes.
The program that does the translation for Java is javac — the Java
"compiler". The bytecodes are numeric machine codes for a computer that
doesn't really exist — a virtual machine. An interpreter that understands

Virtual Machine
e those bytecodes then runs on the native machine. It runs in a loop,
‘ 1 : executing each bytecode it sees on the native computer. The Java virtual
machine (JVM) is an example of such an interpreter.

Using a byte-code interpreter means that the tokenizing and parsing occur
in the translation stage. So a byte-code interpreter is faster than a language
interpreter. The resulting programs are more compact than a fully
compiled program. Perhaps more importantly, byte-code interpreters are
portable. They can be run on any computer that has a virtual machine
capable of properly interpreting the translated byte codes.

2:}{’:5‘:;“:';?0':5“:;2:‘;:::";;“: However, there is still a translation step as the bytecodes are interpreted.
translated in a previous step. The interpreter identifies the equivalent series of machine instructions,
It, too, runs in a loop, but it and then executes them. The overhead involved in any single translation is
doesn't have to do any of the trivial, but overhead accumulates for every instruction that executes. In a
tokenizing or parsing thata large program, the overhead becomes significant compared to simply
language interpreter performs. executing a series of fully-compiled instructions. In addition, there is once
again very little that can be done in the way of optimization. So the good news is that you have compact,

machine-independent code. The bad news is, it's slow.

Back to story

How a just-in-time (JIT) compiler works

A just-in-time compiler, or JIT, makes major improvements in the runtime performance of bytecodes by
compiling them into native machine code before executing them. This section gives a brief overview of
how a JIT works. For more information on compilers and interpreters, see How compilers and
interpreters work.

What makes a JIT tick

“n maea 1n1A0Q 2-80 AM

lotSpot: A new breed of virtual machine - JavaWorld - March 1998 http://www_javaworld.com/javaworld/jw-03-1998/jw-03-hotspot.htm!

4

A JIT translates a series of bytecodes into machine instructions the first
time it sees them, and then executes the machine instructions instead of
interpreting the bytecodes. This process is shown in the diagram below.

Program
Source

The machine instructions aren't saved anywhere except in memory.
(That's why the diagram shows them in a dashed box.) The next time the
program is run, the bytecodes are translated into machine code once
again. The result is that the bytecodes are still portable, and they
typically run much faster than they would in a normal interpreter -- as
much as 50 times faster, in fact. Typically, that's fast enough for most
I/O-intensive and interactive applications.

When a just-in-time compiler succeeds -- and when it

Native
doesn't machine

Because a JIT translates a series of instructions, rather than executing Code
one instruction at a time, it can do some optimization. For example, a JIT L .
can keep from reloading a value into an internal register when the value A just-in-time compiler (JIT)

translates bytecodes into

is already present. For that reason, and because it is executing machine machine instructions as they

code, a JIT does really well with computational programs that execute are read in, and performs a
the same series of instructions many times. dégree of optimization. The
resulting program is then run.
On the other hand, a JIT does not produce much of an advantage for qoarts :cfl::‘ee ;2%%::‘;::52 4
I/O-intensive programs or code that does a lot of garbage collection -- the "2 11T doesn't waste time _

application code takes up such a small amount of time that any optimizing code that never runs.
optimizations are virtually unnoticeable. Initialization code also poses a

problem for a JIT. Because a JIT optimizes everything it sees, a lot of time may be spent uselessly
optimizing initialization code and other "one-time" methods. Finally, a JIT can't afford to be too good at
optimizing — because some of its time inevitably must be wasted, the "better" the JIT, the more time it
will spend on useless optimization.

Back to story

1IN0 Q&N AN

