
IN THE UNITED STATES DISTRICT COURT
FOR THE DISTRICT OF COLUMBIA

UNITED STATES OF AMERICA,

Plaintiff,

v. Civil Action No. 98-1232 (TPJ)

MICROSOFT CORPORATION,

Defendant. FILED UNDER SEAL
(Seal removed pursuant to court's
October 14, 1998 Order

STATE OF NEW YORK ex rel.
Attorney General DENNIS C. VACCO, et al.,

Plaintiffs,

v.

MICROSOFT CORPORATION,

Defendant.

Civil Action No. 98-1233 (TPJ)

EXPERT TESTIMONY OF PROFESSOR DAVID J. FARBER

MY PERSONAL BACKGROUND

1. I am The Alfred Fitler Moore Professor of Telecommunication Systems at the Moore

School of Engineering of the University of Pennnsylvania in Philadelphia, Pennsylvania. I have

held that endowed chair since 1994. From 1988 to 1994 I was a Professor of Computer Science

-2-

and Electrical Engineering at the University of Pennsylvania. From 1977 to 1988, I was a

Professor of Electrical Engineering and Computer Science at the University of Delaware. From

1970 to 1977, I was an Associate Professor of Information and Computer Sciences and Electrical

Engineering at the University of California at Irvine. A copy of my curriculum vitae is attached

as Exhibit A to this testimony.

2. As you will see from my curriculum vitae, I have since 1988 been Director of the

Distributed Systems Laboratory at the University of Pennsylvania. That Laboratory is the center

for research activities in the general systems area for both computer sciences and electrical

engineering at the University. In that capacity I am involved in high speed network research with

emphasis on its impact on hardware and operating systems. Over the last ten years my research

has generally focused on the areas of high speed networking and the implications of that

networking on interconnections, protocols and computer hardware and software architecture.

During that period, I have also taught graduate and undergraduate courses in the computer

science field, including course work concerning software development.

3. From 1987 to 1988, I was Director of the Center for Networking Technology and

Applications at the University of Delaware. As Director I was instrumental in the definition and

implementation of the early stages of commercialization of the Internet. During the period I

was at the University of Delaware, my research work was principally in the area of distributed

systems with a focus on the hardware and software necessary to implement such systems. I also

-3-

led the creation of the University’s own computer network and directed University-wide research

in distributed systems.

4. In my years at the University of California at Irvine, I created and led what was then

one of the largest computer research activity funded by the National Science Foundation -- the

Distributed Computer Research Project. That Project created much of the software concepts for

future distributed systems activities.

5. During my career, as detailed in my curriculum vitae, I have been Principal

Investigator on a number of research projects (funded by government and private sources)

related to computer software design and methodology. I have also been awarded two patents. I

have published numerous articles in the computer science field and have lectured regularly in

this country and around the world at various university and industry seminars.

6. I also have been regularly involved in activities in the business side of computers. I

was a founder and Vice President of Caine, Farber and Gordon, Inc. (“CFG”), a private firm

which is involved in program design methodology. CFG was an early creator of advanced

software and compilers for microsystems and much of the Intel software support for the 8080

(the first pc-family microchip).

-4-

7. I have been on the technical staffs of Xerox Data Systems, the RAND Corporation

and Bell Laboratories. I am currently on the technical advisory boards of a number of major

corporations in the computer field, including Earthlink, Covad and Com21.

8. I have not testified in deposition or at trial as an expert witness in the last ten years,

although I have consulted for parties in litigation in the past. I am being paid $300 per hour for

my work for the government in this case.

THE SUBJECT MATTER OF MY TESTIMONY ON BEHALF OF THE UNITED STATES

9. I have been asked by the Department of Justice to provide my expert opinions on

software designed to function as a computer operating system and software applications that

browse the World Wide Web via the Internet. The latter software is commonly referred to as an

Internet or web browser (which I describe further below). In particular, I will discuss:

 (A) the software development process and its implication for software products;

 (B) the relationships between operating systems and application software,

including Web browsers (as defined below);

 (C) the significant inefficiencies in designing so-called operating systems which

include inappropriate functions such as software applications (e.g.Web browsers); and

 (D) the negative consequences of permitting Microsoft to add what are now

applications to create an ever-larger, monolithic software package which Microsoft calls

its “operating system” for personal computers.

-5-

These subjects will be addressed from the viewpoints of software developers, original

equipment manufacturers (“OEMs”) and retail end users.

10. My testimony is based entirely on my lifetime of experience in the field of computer

science. The matters about which I testify here concern commonly understood and accepted

principles and practices in the field of computer science which are applicable to all software,

whether developed by Microsoft or any other company. For that reason, I have done not, and do

not believe it is necessary for me to do, extensive analytical work on the details of Windows 98

software (such as Professor Felten has done) in preparation for this testimony. My preparatory

work (apart from preparing my report, this testimony and being deposed by Microsoft counsel)

has been limited to a meeting with Professor Felten, review of certain memoranda filed by the

parties with the Court, this Court’s opinion denying summary judgment in this case and the

Court of Appeals’ decision of June 1998 concerning the Consent Decree entered against

Microsoft.

TERMINOLOGY USED IN MY TESTIMONY

11. I and, I expect, other witnesses will use several technical terms for which I think it is

useful to provide my definition for the Court. These definitions include the following:

(A) Software is the programs, routines, rules, instructions, and associated

documentation of a computer system.

-6-

(B) An Operating System is software that controls the execution of programs on

computer systems and may provide low-level services such as resource allocation,

scheduling and input-output control in a form which is sufficiently simple and general so

that these services are broadly useful to software developers.

(C) A Software Component is software that provides a specialized function or

service in a form that can be incorporated into a variety of applications.

(D) An Application is a collection of software functions used to perform specific

user-oriented tasks.

(E) A Browser is a software application that allows its users to examine the

content of an information collection in a user friendly manner. What is commonly referred to as

an Internet or Web browser permits the user to examine, display, scan, and navigate via the

Internet a particular information collection on the World Wide Web.

THE METHODOLOGY OF SOFTWARE DEVELOPMENT

12. The process of designing, writing, modifying, and testing software is one which is

the subject of academic analysis and writing. Modern software is developed in small modules

(i.e., routines, subroutines, methods, functions, procedures, etc.) which are aggregated into larger

modules (i.e., files), which are in turn aggregated into software products.

13. The nature of the software development process, motivated in part by human

limitations in managing design complexity and in part by a motivation of functional reusability,

-7-

imposes a modular structure on software. A module is the computer software equivalent of a

paragraph, in which, via one or more routines, one reasonably-sized function is accomplished.

Each routine is a sequence of instructions (i.e. lines of code -- often in one of a number of high

level programming languages). An instruction is a call on a lower level routine requesting that

the function of the lower level routine be performed using data provided by the higher level

routine. For example, if a computer is asked to calculate the hypotenuse of a triangle, it will have

to call a lower level routine which computes the sine or cosine of the angle. At the lowest

levels, an instruction is directly interpreted by the processor after possible translation by a

compiler. One example would be a command to add two integers together. Routines typically

contain a few tens to a few hundreds of lines of code each.

14. These software modules are then “knitted together” into unified programs. That is,

each software product is built up from simple low level routines that are then called by routines

at a higher level of composition. Routines at each level are called by yet higher level routines

until the desired functionality of the end product is achieved. In this manner, all software is built

up layer by layer through the use of often large numbers of routines, but each with limited

complexity.

15. As a result of this layering, software has an inherently malleable and modular

structure which gives software developers broad freedom in combining (i.e. bundling) different

functions into software products. This malleability also gives a software developer two related

types of design freedom: (1) to integrate two separate cd-roms because the functions on one

-8-

particular cd-rom can be integrated by an OEM or retail end user with functions on another cd-

rom and (2) to determine which functions to include within software sold as one product and

which to separate and sell as a different product, whether produced by the same or a different

software developer, for installation and use together by the a retail end user. Therefore, for

example, software malleability provides a developer with the freedom to choose whether to

incorporate a particular application (such as a Web browser) into a software product or sell that

application separately for later combination by another software developer or retail end user with

other software.

16. A common theme in software engineering and among software development

methodologies is the advocacy for, and techniques in support of, the modular design and

implementation of software. There are several efficiencies which result from development of

software in this modular form. These include reduced errors in the development process, easier

testing of products, reduced cost and complexity for maintenance and upgrades, and greater

possible sharing of software modules among separate products. For example, the function of a

computer which permits it to determine the sine of an angle should be modularized so that any

application can call that function and, if there are any improvements or errors, the source can be

more readily found and changed or corrected.

17. Applications may be large, often involving a very large number of routines.

Examples of applications are Microsoft Word, Notepad and Speech Recorder -- as well as

Internet Explorer. Software, including applications, must be stored in the form of files. The

-9-

formation of these types of files (sometimes called dynamically linked libraries or DLLs in the

Microsoft Windows world) should be dictated primarily by considerations of storage/loading

efficiency (time to prepare the software to run), file reusability (the ability to use all or most of

file in more than one application) and execution performance. The most technically efficient

size for a file is generally larger than a single routine and smaller than an entire application.

Thus, the aggregation of routines into products involves two processes: the routines of the

product must be aggregated into files, which must then be aggregated into products, often with

connecting code.

 18. All the routines that are called directly or indirectly by a program should be

available when the program is being used. But whether those routines originate from one

particular software program or another is irrelevant to the performance of the functions, so long

as the software is written and installed such that the programs work together. Moreover, a

software developer is free (subject to minimal limitations of no relevance here) to change the

partitioning of routines among files at any time without changing their function or correct

operation when the files are combined during execution in an end user’s computer. Thus, there is

generally no technical reason why a particular routine must be included in the same file with

another routine so long as the routines are appropriately compiled and linked in the end user’s

computer.

19. There are several software tools (i.e., software analogous to machine tools in the

manufacturing world) that are used by software developers to accomplish this process of

-10-

“knitting together” routines into files and, in turn, into programs. These tools include compilers,

linkers and loaders. A compiler translates instructions (written in a language efficient for

programmers) into the language understood by the computer hardware. A linker takes separately

compiled program units (i.e., files or sets of routines) and combines them into a complete

program. A loader loads programs, or parts of a program, into the memory of a computer in a

form in which it can be executed. Programs are normally compiled only by the software

developer and the resulting code files are delivered to the customer. Although the end user may

not realize it, loading is typically done by the end user as part of his/her initiating execution of an

application. Linking can be performed statically by the software developer or dynamically when

needed for execution of an application.

APPROPRIATE METHODS TO DEVELOP APPLICATIONS TO RUN ON
A PARTICULAR OPERATING SYSTEM

20. Developers of software, whether end user applications or OEM components, write

their programs with the expectation that certain functions can and will be performed by the

operating system of the computer on which the software will be used. The application invokes

the operating system by calling routines supplied as part of the operating system. The

interconnection is referred to as an application-programming interface (API). An API is the

software convention that must be satisfied by a programmer when calling a function provided by

the operating system. Access to and use of APIs allows: (1) an application developer to avoid

what otherwise may be the expense of writing or purchasing all of the software necessary and (2)

the application to run on a computer in conjunction with a specific operating system.

-11-

21. Developers of software applications depend on functions provided by the operating

system. In that sense, application software developers and any operating system developer share

a mutual dependency: applications developers rely on the presence of certain simple, general

functions to which they interconnect their applications via APIs while an operating system

developer must offer appropriate functions and APIs to which applications developers can write

applications in sufficient quantity and quality that OEMs and end users will choose to buy both

the operating system and applications.

22. From at least a technical viewpoint, the most efficient operating system is one that

includes only those functions described in Paragraph 11(b) above which will be used by large

numbers of application and component software development projects or are, by their unusual

and peculiar nature, required to be at the operating system level. An example of the latter is

security and protection of other operating system functions, which has become more critical as

personal computers interconnect in networks which could otherwise invade and damage those

computers’ operating system functions. Moreover, only functions that are critical to the

operating system itself or functions that the operating system makes available in the form of

simple, general purpose APIs exist in a very efficient operating system. By way of example,

network software that regulates the transfer of information to or from an ethernet card is

normally part of an operating system while the file transfer client, which is further up the chain

of routines, should not be in the operating system. This distinction is based on real time

performance demands and security needs.

-12-

23. Inclusion of inappropriate functions at the level of what some software developers

call an “operating system” is very likely to impose inefficiencies on application and other

software developers, OEMs and retail end users. If the developers must use the particular

functions, inappropriately placed in what I and others in the field refer to as “the operating

system environment” (to distinguish it from what I consider to be an appropriate operating

system), because of the manner in which that operating system environment is written or

marketed, developers who need to write applications for that so-called “operating system” will,

by definition, be forced to use that particular function regardless of whether that developer

would prefer to use another software routine or develop a new one. Even if the structure and

marketing of the operating system environment permits the addition of similar functions in

addition to the functions provided by the operating system environment, the developer who

wants or needs a different method of achieving a particular function must nevertheless write or

buy often expensive, additional software. This duplication will likely: (1) increase storage

requirements for different versions of software separately developed and included by the

operating system vendor and application developer, (2) cause performance degradation from

unused functions of the operating system and (3) increase risks of “bugs” (i.e., malfunctions) in

software.

-13-

THE NEGATIVE EFFECTS OF MICROSOFT’S BUNDLING
OF ITS SO-CALLED OPERATING SYSTEM WITH ITS INTERNET BROWSER

24. Microsoft claims in its memoranda filed with this Court that certain “efficiencies”

result from its “integration” of some of the files (or DLLs) that are included in its Internet

Explorer (IE) product as part of Windows 98 (which I refer to as an “operating system

environment plus applications” to distinguish it from my definition of a true operating system

and an operating system environment). The claims that efficiencies exist from this combination

of functions are misleading. While the combination may offer certain efficiencies, these same

efficiencies can be achieved without bundling of the Web browser software with what Microsoft

calls its Windows operating system. This is because there are no technical barriers that prevent

Microsoft from developing and selling its Windows operating system as a stand alone product

separate from its browser software -- or other software functions beyond the appropriate

operating system functions. Windows 98 (like all other software) necessarily consists of

modules which are malleable and separable. There are no technical efficiencies for users

achieved by combining Microsoft’s browser software with the remainder of the software sold as

Windows 98 that could not be achieved by writing two programs in a manner that later could be

loaded and “integrated” either by the retail end user (i.e., just as end users install any other

application that runs on Windows) or by an OEM.

25. One example of such a division of the existing Windows 98 would be that which I

understand Professor Felten has developed with his team. The software which is necessary to

-14-

accomplish Web browsing can be separated from the remainder of Windows 98 and sold on a

separate disk (or some other distinct method). Yet, if an OEM or end user so desires, the

operating system, operating system environment and browser application software can be

installed by them to create the current version of Windows 98 (with the browser software

labelled for commercial purposes as a Microsoft product called Internet Explorer); if that is not

desired, an alternative Web browser can be installed with the Windows 98 operating system

environment. Moreover, given the completely malleable nature of software and the apparently

extensive number of files included in Windows 98, there are very likely to be alternative ways

to separate Microsoft’s web browsing software from those files which could and should be part

of a Windows 98.

THE NEGATIVE TECHNICAL CONSEQUENCES OF PERMITTING MICROSOFT
TO BUNDLE APPLICATIONS AND OTHER SOFTWARE FUNCTIONS INTO ITS

OPERATING SYSTEM

26. I understand that Microsoft claims that it should be permitted to include any software

it chooses in its Windows product so long as some efficiency can be articulated as a result of the

“integration” of that software into that product. But if that standard were adopted by this Court,

then any application could be bundled into Microsoft’s Windows product -- regardless of the

ability, inherent in the nature of software described above, to achieve that efficiency without

combining the applications into an ever larger bundle of software which includes not only

operating system functions but operating environment functions and applications. Taken to its

logical extreme, that standard would mean that Microsoft could bundle together all its existing

and future applications with its current (already massive) product sold as Windows 98.

-15-

Windows 98 (or whatever later version of Windows) could become the one and only universal

software product, and only Microsoft could develop software for Intel-based personal computers.

For example, Microsoft could next claim that, because there are some functions which overlap

between Windows 98 and Microsoft’s suite of applications called Office, now sold separately,

those applications could be bundled into one product to achieve some “efficiency”. But there is

no such “efficiency” which cannot be achieved by the same separate distribution of those

applications and their “integration” by an OEM or retail end user when the applications are

installed (as is now the case).

27. In my view, any analysis of the propriety of such actions by Microsoft should take at

least the three technical factors discussed above into account:

 (a) for software, “efficiencies” achieved through combination of different functions into

one so-called “integrated” software program can also be achieved without that combination by a

software developer by simply separating that program into two or more pieces, distributed

separately and, if so desired, integrated for use by an OEM or retail end user;

 (b) combining applications with an operating system into a single product available only

with all functions combined imposes technical inefficiencies for OEMs, other software

developers and retail end users, including redundancy, performance degradation of unused

software and increased risks of “bugs”; and

 (c) any function provided by an operating system (as distinct from higher level files) that

does not satisfy the criteria of simplicity, general applicability and accessibility reduces the

efficiency of the operating system environment and applications that use it.

-16-

28. None of the above denies the possible convenience or preference of some users for

“one stop shopping” for bundled products such as the current version of Windows 98 sold as one

product by Microsoft. Those OEMs and retail end users who may find this convenience

outweighs any technical inefficiencies described here can certainly still choose to buy Windows

98 in the form it now exists. But only the availability of an unbundled version of Windows 98

will cure the difficulties which arise for many OEMs, application developers and retail end users

who may find too burdensome the problems arising from their inability to substitute different

functions and applications (such as the Web browser) for use with only parts of what is now sold

as Windows 98. The OEMs, developers and retail end users who do not want all the software

that Microsoft sells as Windows 98 (including, for example, what Microsoft labels Internet

Explorer) suffer the inefficiencies described above. Given the ease with which a properly

structured browser application can be unbundled from Windows 98, I know of no technical

reason why any OEMs, software developers or retail end users must suffer these negative

consequences.

I declare under penalty of perjury that the foregoing is true and correct.

David J. Farber

Executed on October 8, 1998.

