
DECLARATION OF EDWARD W. FELTEN
PAGE 1

IN THE UNITED STATES DISTRICT COURT
FOR THE DISTRICT OF COLUMBIA

UNITED STATES OF AMERICA,

 Plaintiff,

v. Civil Action No. 98-1232 (TPJ)

MICROSOFT CORPORATION,

 Defendant.

STATE OF NEW YORK ex rel.
Attorney General ELIOT SPITZER, et al.,

Plaintiffs,

v. Civil Action No. 98-1233 (TPJ)

MICROSOFT CORPORATION,

Defendant.

DECLARATION OF EDWARD W. FELTEN

I. INTRODUCTION

1. I have testified twice previously in this action. My background and qualifications

were presented in my written direct testimony.

2. I have been asked by the Department of Justice to analyze the technical aspects of

Plaintiffs’ proposed remedies.

DECLARATION OF EDWARD W. FELTEN
PAGE 2

3. Among the areas I have considered are how to define various terms useful for

specifying remedies, how to distinguish among various types of software (such as

operating system software, middleware, and applications), the technical implications of

the proposed changes to Microsoft’s corporate structure, and the nature of, and means of

achieving, interoperation between software programs.

4. My analysis has also included technical issues related to bundling of operating

system and non-operating system software; technical issues and problems stemming from

Microsoft’s ability to withhold technical information from other companies; OEMs’

ability to configure Windows; the feasibility of porting applications to non-Windows

platforms; and the technical effects of such porting.

5. The remainder of this Declaration is structured as follows. First, I discuss the

definitions of technical terms offered by Plaintiffs. Then I consider, in turn, the four

specific sections of Plaintiffs’ proposal that have technical implications or warrant

comment from a computer science perspective: Section 1, requiring changes to

Microsoft’s corporate structure; Section 3.b, requiring Microsoft to provide

documentation and other technical information to other companies; Section 3.g,

prohibiting Microsoft from binding certain products to operating systems; and Section

3.a.iii, requiring Microsoft to allow OEMs to configure Windows.

II. DEFINITIONS IN PLAINTIFF’S PROPOSED REMEDIES

6. The Court’s Findings of Fact and Conclusions of Law discuss Microsoft’s

behavior with respect to certain types of software (e.g. “operating system software”).

Plaintiffs’ proposal uses similar technical terminology. A careful analysis of Plaintiffs’

DECLARATION OF EDWARD W. FELTEN
PAGE 3

proposal must begin by considering how Plaintiffs define the technical terms they use,1

the technical appropriateness of those definitions, and how they relate to the Court’s

Findings of Fact and Conclusions of Law.

A. TYPES OF SOFTWARE

7. Plaintiffs define an “Operating System”(§ 7.s) to be the code that controls and

interacts with hardware devices, offering a platform to other software. This closely

follows the definition given by the Court in paragraph 2 of the Findings of Fact. This

definition is relevant because the Court found that there is a distinct market for Operating

Systems for PCs (Findings of Fact at ¶ 18), and that Microsoft has monopoly power in

that market (Findings of Fact at ¶ 33).

8. Plaintiffs define “Operating System Product”(§ 7.t) to be a product consisting of

an Operating System and any other software shipped with it. Under this definition,

Windows 95, Windows 98, Windows 2000, Millennium, Whistler, and Blackcomb are

Operating System Products2. Consistent with my testimony and the testimony of other

witnesses at trial, these products are properly not considered Operating Systems; they are

bundles of Operating System and other software, some of which should be considered

separately from the Operating System for the purpose of framing remedies.

9. Plaintiffs essentially define “Middleware”(§ 7.o) to be software that serves as an

intermediary between other pieces of software3. This is consistent with the Court’s

definition in paragraph 28 of the Findings of Fact. The definition is relevant because of

the Court’s findings regarding the competitive effect of Middleware. (Findings of Fact

1 In this Declaration, I capitalize all terms defined in Section 7 of Plaintiffs’ proposal.
2 They are also Windows Operating System Products.
3 Plaintiffs also define “Middleware Product” (§ 7.p). This is a nontechnical definition.

DECLARATION OF EDWARD W. FELTEN
PAGE 4

at, e.g., ¶¶ 29, 32, 56, 60) Indeed, a major section of the Findings of Fact is entitled “The

Middleware Threats.”

10. The current state of technology creates the possibility of widespread development

of new and innovative types of Middleware, which could provide cross-platform and

cross-device foundations for software developers to build upon. Whether this possibility

will be realized depends on economic factors that are beyond my expertise. Professor

Henderson discusses these factors in her Declaration.

11. Plaintiffs define “Platform Software”(§ 7.x) to be software that is either an

Operating System, or Middleware, or a combination of the two. Platform Software is

software that offers APIs or Communications Interfaces.

B. BINDING AND END-USER ACCESS

12. Plaintiffs define “Binding”(§ 7.d) to mean bundling a product into an Operating

System Product without allowing OEMs and users ready means to remove or uninstall

the product. This definition is relevant because the Court found that Microsoft illegally

Bound Internet Explorer to Windows 98. (Conclusions of Law at pp. 25-34)

13. Plaintiffs define “End-User Access”(§ 7.j) as the ability of an end user to invoke

Middleware, either directly or indirectly. The inclusion of indirect invocation is

important because many of the common mechanisms for invoking software involve an

indirect link between the user’s action and the invocation of the software. For example,

when the user selects a program by clicking an entry on the Start menu, the system

responds to this click by opening a file and reading from that file the location of another

file, which is then invoked. ”End-User Access” is used only in Plaintiffs’ proposed

DECLARATION OF EDWARD W. FELTEN
PAGE 5

restriction on Middleware Product Binding (§ 3.g), and I discuss its significance below in

paragraph 89.

C. PERSONAL COMPUTER

14. Plaintiffs define a “Personal Computer” (“PC”) (§ 7.v) to be an Intel x86-based

computer (or a computer based on a microprocessor that is a successor to or competitor

of an x86-based microprocessor) using a keyboard and display and configured so that its

primary purpose is to be used by one person at a time. This closely matches the Court’s

definition in paragraph 3 of the Findings of Fact. (Plaintiffs use the term “PC” where the

Court used “Intel-compatible PC”, but the definitions of the two terms are very similar.)

This definition is relevant because the Court has ruled that there is a distinct market for

PC Operating Systems (Findings of Fact at ¶ 18), that Microsoft has monopoly power in

that market (Findings of Fact at ¶ 33), and that Microsoft has illegally used that

monopoly power. (Conclusions of Law at pp. 7-34)

D. TYPES OF INTERFACES

15. As defined by Plaintiffs, “APIs” (§ 7.b) comprise all of the mechanisms by which

Platform Software on a PC interacts with another component (which may be either

software or hardware) on that same PC, along with some mechanisms for interaction with

software on other devices. An API is like a specialized language in which Platform

Software and the other component speak to each other, allowing the Platform Software

and the other component to ask each other to do things, report on the status of previously

requested actions, and generally interact with each other. “Calling” an API is like

making a statement in this specialized language. APIs are an important and relevant

DECLARATION OF EDWARD W. FELTEN
PAGE 6

concept because they describe the means of interaction between components of a

computer system (for example, between different software products).

16. The definition of APIs covers both calls made by the other component to the

Platform Software, and calls that the other component is required to understand in order

to make full use of the Platform Software4.

17. As defined by Plaintiffs, “Communications Interfaces”(§ 7.f) comprise all of the

mechanisms by which Microsoft Platform Software on a PC interacts with software on

other computers.

18. I will use the term “Interfaces” to refer collectively to APIs and Communications

Interfaces. Because APIs include all means of interaction between Microsoft Platform

Software and other (hardware or software) components on the same computer, and

Communications Interfaces include all means of interaction between the Microsoft

Platform Software and components on other computers, Interfaces include all means of

interaction between Microsoft Platform Software on a PC and any other components. It

is important that these terms have this scope, because this allows the decree to treat all

means of interaction between Microsoft Platform Software and other components in a

consistent manner.

4 The latter case (calls that the other component is required to understand) may require some explanation,
because one typically thinks of the component as calling the Platform Software, and not the other way
around. There are important cases, though, in which the Platform Software “calls back” to the other
component.
For example, consider an API that contains a call that allows the other component to ask the Platform
Software to copy the contents of a compact disk onto the computer’s hard drive. The Platform Software
may want to notify the other component when the copying is finished, or it may want to keep the other
component apprised of the status of the copying. The API might include a “progress notification” call that
the Platform Software could use to inform the other component of the progress of the copying. The other
component would have to understand this call in order to take full advantage of the API. The use of such
“callback” or “notification” calls is a common idiom in API design.
Accordingly, Plaintiffs’ inclusion of calls in both directions between the Platform Software and the other
component is appropriate for the purpose of describing all means of interaction between Platform Software
and other components.

DECLARATION OF EDWARD W. FELTEN
PAGE 7

E. TECHNICAL INFORMATION

19. Plaintiffs define “Technical Information”(§ 7.bb) to be all information about

Interfaces that is needed to enable the development of other (hardware or software)

components to interoperate with Microsoft Platform Software. Because Interfaces

include all means of interaction with the Microsoft Platform Software, Technical

Information includes no more and no less information than is required by other

components to interoperate fully with the Microsoft Platform Software. This is

appropriate and necessary to effectuate Plaintiffs’ proposals relating to disclosure of

Technical Information, which I discuss below.

20. Plaintiffs provide a non-exhaustive list of items (reference implementations,

communications protocols, etc.) that may be included in Technical Information.

Microsoft and other parties commonly provide appropriate items from this list when they

wish to disclose Interfaces. To illustrate the role of the items on this list, I will now

provide a few examples of how and why items on the list are needed by developers. For

brevity, I will not detail all items on Plaintiffs’ list. Justifications similar to those I set

forth below are possible for all of the items on the list.

21. A “reference implementation” is documentation in the form of functioning source

code. Unlike a production implementation, a reference implementation is designed to

maximize simplicity and clarity of expression (in the source code) rather than technical

efficiency.

22. A “communications protocol” is a set of conventions for communication between

programs, typically across a network. The TCP/IP protocol that underlies Internet

communication and the HTTP protocol for distributing Web content are two examples.

DECLARATION OF EDWARD W. FELTEN
PAGE 8

23. A “file format” describes a particular way of arranging data in a file on the hard

drive of a computer. Whenever a program saves data to the hard drive, the data must be

saved in a file format. Some file formats are standardized (e.g. the GIF and JPEG

formats for storing photographs and other visual images) and others are proprietary (such

as Microsoft Word’s format for storing documents).

24. “Data structure definitions and layouts” are like file formats, except that they

apply to data stored in RAM memory rather than on a hard drive.

25. “Error codes” are special values used to indicate that an API call failed due to

some erroneous or unusual condition. When a particular error code is used, the software

receiving the error code needs to know what the error code means, so it can decide how

to cope with the error. For example, a CD-player application may receive an error code

saying that there is no disk in the CD drive. If the application knows the meaning of this

error code, it can ask the user to insert a disk.

26. “Memory allocation and deallocation conventions” describe the assumptions an

Interface makes about when and how memory is allocated and deallocated. Programs

often allocate regions of memory in which to place their data; a program is typically

responsible for deallocating that memory when it is done using it. When a program is

cooperating with Platform Software via an Interface, the program and the Platform

Software will each make assumptions about which of them is responsible for allocating

and deallocating the memory needed to hold the data that they will share. If the two sets

of assumptions are inconsistent, incorrect behavior will result. In order to prevent this,

the Platform Software must document its assumptions, so the other program knows what

assumptions it should make.

DECLARATION OF EDWARD W. FELTEN
PAGE 9

27. “Threading and synchronization conventions” describe the assumptions an

Interface makes about the timing of multiple calls to it by the same program. For

example, an Interface may function correctly only when calls to it occur one at a time.

Alternatively, the Interface may allow several calls to be going on at the same time. If a

software developer wants to use the Interface, he needs to know which of these

conventions the Interface follows; otherwise, the developer might violate the Interface’s

assumptions, or might sacrifice performance by unnecessarily requiring calls to “wait in

line” for their turn, rather than being made all at once.

28. “Algorithms for data translation and reformatting” describe how an Interface

changes how data is formatted. It is often beneficial to translate data into a format that

has some desirable technical property. For example, compressing data reduces the

amount of memory required to store it, and encrypting data makes it unintelligible to

intruders. If an Interface translates or reformats data, software that uses that Interface

may need to know how the data is reformatted.

III. TECHNICAL IMPLICATIONS OF THE REORGANIZATION PROVISION

29. Section 1 of Plaintiffs’ proposal requires changes to Microsoft’s corporate

structure. I understand that the reorganization provisions are motivated primarily by

economic considerations, such as a desire to change parties’ incentives. These economic

issues are outside my expertise, so I will not discuss them. However, I do wish to

comment briefly on the technical implications of the reorganization provisions.

A. TECHNICAL IMPLICATIONS OF MICROSOFT’S CONTROL OVER INTERFACES

30. Microsoft designs the Interfaces that other hardware and software products use to

interoperate with Windows. Microsoft has the ability to change these Interfaces in each

DECLARATION OF EDWARD W. FELTEN
PAGE 10

new version of Windows. (Microsoft also has the power to withhold Technical

Information about its Interfaces; I discuss that issue below, beginning at paragraph 51.)

31. In general, an Interface may match the needs of some software well and serve

other software poorly. The time and effort required to create and maintain a product

depends in part on how well that product’s needs match up with the Interfaces it uses. As

a result, an Interface can be designed in a way that facilitates the development of some

products while hindering the development of others.

32. The same holds true with respect to individual features within products. A

particular Interface may tend to facilitate the development of certain features while

hindering the development of others.

33. For example, consider an Interface that allows programs to access storage devices

such as hard disk drives and CD drives. The Interface might provide a way for the drive

to tell the other software that no there is no disk in the drive, or it might not provide such

a facility. Omitting such a feature would hinder the development of drives with

removable disks (such as CDs), because there would be no easy way to notify the user of

a common error condition encountered when using such drives. Drives with

nonremovable disks, such as hard drives, would not be inconvenienced by the omission

of this feature.

34. Microsoft’s control over Interfaces gives it the ability to control how well various

products are served by those Interfaces, and consequently gives Microsoft the ability to

shape the technical landscape to favor some products or technologies over others.

Professor Henderson discusses the competitive impact of this fact, and how Section 1 of

Plaintiffs’ proposed remedy affects it.

DECLARATION OF EDWARD W. FELTEN
PAGE 11

B. TECHNICAL BENEFITS OF PORTING MICROSOFT OFFICE

35. Professors Henderson, Romer, and Shapiro discuss the likelihood that the

Applications Business will port Microsoft Office to run on non-Microsoft PC Operating

Systems, and the competitive benefits of this porting. Porting Office would also provide

technical benefits; I will now discuss two of these benefits.

1. OFFICE, IF PORTED, WOULD BE CROSS-PLATFORM MIDDLEWARE

36. As I and other witnesses discussed in testifying at trial, Microsoft Office serves as

Middleware, providing a broad set of Interfaces to application developers. (Felten

6/10/99am at 58:22-59:4; Devlin 2/4/99am at 41:16-42:3) Microsoft frequently promotes

this platform aspect of Office (see GX 2214), and many software developers use it as a

foundation for their applications (for example, custom workflow and document

processing applications).

37. Microsoft Office can be ported to run on Operating System Products other than

Windows. Indeed, Microsoft has already ported Office to Apple’s MacOS. It would be

possible for the Applications Business to port Office to other, PC-based Operating

System Products.

38. If ported to run on non-Windows PC-based Operating System Products (in such a

way that the ported versions exposed substantially the same Interfaces as the Windows

version), Office would serve as cross-platform Middleware, because the ported versions

of Office would be able to support the same applications that the Windows version did.

39. Having ported Office to other Operating System Products, the Applications

Business could then add support for more Interfaces to Office, thereby making it even

more attractive as cross-platform Middleware.

DECLARATION OF EDWARD W. FELTEN
PAGE 12

2. OFFICE, IF PORTED, WOULD FACILITATE SHARING OF FILES

40. Users frequently share files with each other. For example, a user might use

Microsoft Word to create a document on one PC, and then email that document to

another user (on another PC) so the second user can read or comment on the document.

This kind of file sharing depends on the existence of common file formats that can be

used by the software on both PCs.

41. Microsoft Word, by default, saves files on disk in a format that Microsoft

designed. When Microsoft Word later opens a file saved in this proprietary format,

information in the file is used to recreate the state of the original document. As a

consequence of the fact that a very large percentage of PC users use Microsoft Word as

their document processing software, the Word file format is the de facto (and currently

proprietary) standard for sharing editable text documents on the Internet.

42. Microsoft has not fully disclosed the Word file format. Several groups have tried

to use reverse engineering to determine the Word file format, but they have had limited

success. Some aspects of the Word file format remain a mystery outside of Microsoft.

43. Other document processing programs cannot interoperate fully with Word if their

authors do not know the Word file format. For example, suppose a user writes a

document in Word, saves it into a file, and sends a copy of the file to a second user. If

the second user tries to open the file in another program, that program may be unable to

interpret some of the information in the file, and consequently the second user may

receive an incomplete or otherwise inaccurate view of the file.

44. Because Microsoft has not fully disclosed the Word file format, non-Microsoft

document processing programs currently cannot read all files created by the Windows

DECLARATION OF EDWARD W. FELTEN
PAGE 13

version of Microsoft Word. If Microsoft, or the Applications Business, ported Word to

another Operating System Product, the ported version would support sharing of files with

other Word users more effectively than a non-Microsoft product can.

45. At least two other programs in Microsoft Office, the Excel spreadsheet and the

PowerPoint presentation graphics application, also use proprietary file formats that have

not been disclosed fully. The same considerations apply to these programs as to

Microsoft Word – porting them would similarly improve users’ ability to share files

across platforms, assuming that the Microsoft file formats remain the de facto standards.

C. IMPLICATIONS FOR TECHNICAL EFFICIENCY

46. As a technical matter, separating Microsoft into an Operating System Business

and an Applications Business is unlikely to compromise, and in fact may enhance,

technical efficiency. As the evidence in this case illustrates, there is no reason why

Operating System developers and other developers need to be housed under the same

roof in order to produce technically efficient or “integrated” (in the sense of providing

benefits to consumers by working particularly well together) solutions.

47. This fact is illustrated by the relationship between Caldera OpenLinux and its

Web browser. Mr. Allchin’s videotape demonstration characterized Caldera OpenLinux

as offering “OS Integrated Browsing” (screen shot captured as GX 1707). As both Mr.

Allchin and I testified, this integration was achieved even though the Linux Operating

System and the KDE browser (the “integrated” browser in Caldera OpenLinux) were

developed by different organizations. (Allchin 2/1/99pm at 73:5-15; Felten 6/10/99am at

26:1-14) This example illustrates how software products developed by different

organizations, and combined later by an OEM or end user, can offer the same integration

DECLARATION OF EDWARD W. FELTEN
PAGE 14

provided in multiple products developed by one company. This fact will be reinforced by

the disclosure of all Technical Information to developers outside the Operating Systems

Business. In short, the reorganization of Microsoft into an Operating Systems Business

and an Applications Business need not compromise technical efficiency. Indeed,

particularly in concert with Plaintiffs’ Technical Information disclosure provisions, I

expect exactly the opposite.

IV. PROVISIONS REQUIRING MICROSOFT TO PROVIDE INFORMATION ABOUT
INTERFACES

48. Section 3.b of Plaintiffs’ proposal requires Microsoft to provide certain

information about Interfaces to other companies.

49. I understand Section 3.b to address two competitive problems established by the

evidence introduced at trial. First, Microsoft has illegally used its monopoly power in

Operating Systems as a weapon to disadvantage non-Microsoft products in other

markets(Conclusions of Law at pp. 9-21), and may, if unconstrained, continue to do so to

prevent, degrade, or manipulate technical standards. Second, Microsoft has illegally used

offers to disclose, threats not to disclose, and actual refusal to disclose Technical

Information, to coerce other companies. (Findings of Fact at ¶¶ 84, 90-92, 116, 122, 129,

237, 288, 338-340, 401; Conclusions of Law at p. 19)

A. THE IMPORTANCE OF INTEROPERABILITY

50. “Interoperability” refers to the ability of one program or hardware component to

work with another. For example, an application program may interoperate with an

Operating System by calling APIs provided by the Operating System, or a client (e.g.,

desktop or laptop computer) Operating System Product may interoperate with a server

DECLARATION OF EDWARD W. FELTEN
PAGE 15

(i.e., a computer whose primary purpose is to provide services to other computers)

Operating System Product via a Communications Interface, or a client Operating System

Product may interoperate with another client Operating System Product via a

Communications Interface.

51. Microsoft’s Operating System monopoly gives it the ability to favor Microsoft

products in other markets, by refusing to disclose some of the Interfaces supported by

Windows. Such a refusal would allow Microsoft to prevent some products from

interoperating fully with Windows.

52. Permitting all products to interoperate fully with Windows is necessary to ensure

that those products realize their full potential in terms of performance and functionality.

As the Court found, “Since Microsoft decides which ISVs receive betas and other

technical support, and when they will receive it, the ability of an ISV to compete in the

marketplace for software running on Windows products is highly dependent on

Microsoft’s cooperation.” (Findings of Fact at ¶ 338) The same holds for OEMs and

independent hardware vendors (“IHVs”): if they need special favors from Microsoft to

make their products interoperate fully with Windows, Microsoft will have the ability to

shape the technical landscape in their markets.

B. INTEROPERABILITY: AN EXAMPLE

53. An example will help to illustrate the interoperability issue. Microsoft’s current

Windows Operating System Products support a “file and printer sharing” facility that

allows the user to access files that are stored on other computers, such as file servers, and

to print files on printers connected to other computers. To accomplish this, Windows

uses the Server Message Block (“SMB”) protocol to communicate with the file server or

DECLARATION OF EDWARD W. FELTEN
PAGE 16

print server. Microsoft’s client and server Operating System Products implement the

SMB protocol, so that they can act as file and print servers for Windows clients.

54. The details of the SMB protocol are publicly known, so competing operating

system products can and do interoperate with Windows by acting as file and print servers

for consumers using their desktop PCs. For example, a product called Samba allows

Linux servers to act as file and print servers for Windows clients.

55. Suppose, hypothetically, that a future version of Windows used a new file and

printer sharing protocol rather than SMB, and that Microsoft refused to disclose the

details of that new protocol. This action would give Microsoft the power to choose

which server Operating System Products could interoperate with Windows by acting as

file and print servers for Windows clients.

56. In this scenario, a user who created a document on his client PC and wanted to

print that document on a shared printer nearby would be able to do so only if the print

server was running an Operating System Product that Microsoft allowed to act as a print

server. The user’s experience in using his PC would be adversely affected by

Microsoft’s refusal to disclose the new protocol.

57. A customer who felt compelled to buy client Windows Operating System

Products would therefore additionally be compelled, due to his desire for interoperability,

to buy his server Operating System Products from Microsoft or another vendor to whom

Microsoft chose to disclose the new protocol. Microsoft’s refusal to disclose the new file

and print sharing protocol would prevent some competing server Operating System

Products from interoperating fully with Windows, and thus would put them at a

significant disadvantage.

DECLARATION OF EDWARD W. FELTEN
PAGE 17

58. The same interoperability issue applies to the other Interfaces that Windows

Operating System Products use to provide services to Middleware and application

software on the same PC (or elsewhere). Whenever Microsoft can refuse to disclose

Technical Information about an Interface that allows products in another market to

interoperate with Windows, Microsoft has the ability to prevent competing products from

interoperating fully. Netscape Navigator, from which the Court found Microsoft

withheld Technical Information in the aftermath of the June 1995 meeting (Findings of

Fact at ¶ 90-92), is a good example.

C. PROVIDING INFORMATION ABOUT INTERFACES IS THE BEST WAY TO

ENSURE INTEROPERABILITY

59. Providing information about the Interfaces supported by Microsoft Platform

Software is the only effective way to allow ISVs to interoperate with Windows. Other

approaches, such as plug-in mechanisms, fall far short of the goal of guaranteeing

interoperability. The following analogy will help to illustrate why this is so.

60. Suppose, hypothetically, that I move to Paris. I do not speak French, so from my

standpoint the French language is a proprietary Interface that Parisians use to exchange

information.

61. Suppose further that we wish to guarantee that I can converse with the natives just

as well as any native French speaker can; that is, we want to ensure that I can interoperate

fully with the people of Paris.

62. Obviously, the only way to achieve this goal is to allow me to learn how to speak

French. None of the alternatives comes close to solving the problem in a comprehensive

or systematic way. Phrase books and simultaneous translation are slow and awkward,

DECLARATION OF EDWARD W. FELTEN
PAGE 18

and teaching everybody in Paris to speak English is impractical. The only viable

strategy involves disclosing the structure and meaning of the French language to me, so I

can learn how to speak it.

63. The same principle holds with respect to the Interfaces that software products use

to interoperate. There is no hope of interoperating with another software product if the

details of the language it expects you to speak are unavailable to you.

D. SECTION 3.B EFFECTIVELY ADDRESSES THE INTEROPERABILITY PROBLEM

64. Section 3.b addresses the interoperability problem by requiring Microsoft to

disclose Technical Information which both (a) other companies need to allow their

products to interoperate fully with Windows, and (b) is used by Microsoft itself in certain

ways; and by allowing other companies limited access to Microsoft’s source code for the

sole purpose of ensuring interoperability.

65. A program’s source code5 is a form of documentation – it is the most precise

description possible of the program’s behavior.

66. Compared to source code, written documentation is easier to use and typically

contains the answers to the majority of questions that developers are likely to ask.

Written documentation also offers an overview of a program, a perspective that is not

available in the source code. Thus written documentation is very valuable, even when

source code is available.

67. However, written documentation is necessarily imprecise. Even if the

documenters are doing their best to be helpful, human languages are inexact tools for

5 “Source code” is the form in which software is typically read, written, and manipulated by software
developers. Source code is translated, by a program called a compiler, into the “binary code” form in
which the computer can execute it.

DECLARATION OF EDWARD W. FELTEN
PAGE 19

describing software, so no written description of a program can duplicate the information

in the source code.

68. Source code is also useful in understanding the behavior of software that contains

bugs. Written documentation usually describes the intended behavior of the software, but

the source code encodes the real behavior, bugs and all. Looking at the source code can

help a developer understand how to avoid being tripped up by a bug in Platform Software

he is using.

69. Moreover, Section 3.b limits the Technical Information that Microsoft must

disclose to that information used internally by Microsoft developers. Although this

limitation has practical value because it requires Microsoft to disclose only information

which it knows has value to its own developers, this limitation makes controlled access to

source code all the more important.

70. For these reasons, the most effective way to ensure interoperability with Windows

is to provide both written documentation about Windows, and a way to access the

Windows source code to handle those cases where the written documentation is

insufficient. Plaintiffs’ source code access provision, requiring Microsoft to provide a

secure facility where other companies can use the source code for the purpose of ensuring

interoperability, is an important complement to the Technical Information disclosure

provision. At the same time, by ensuring protection of the source code itself, the

provisions go no further than is necessary to promote interoperability.

71. The timeliness requirement in Section 3.b is also needed to allow full

interoperability. As the Court found,

Because of the importance of “time-to-market” in the software industry, ISVs
developing software to run on Windows products seek to obtain beta releases and

DECLARATION OF EDWARD W. FELTEN
PAGE 20

other technical information relating to Windows as early and as consistently as
possible….[T]he ability of an ISV to compete in the marketplace for software
running on Windows products is highly dependent on [receiving this
information]. (Findings of Fact at ¶ 338)

The timeliness provision requires Microsoft to publish the information as soon as it is

used in a Microsoft product or disclosed to any ISV. This prevents Microsoft from

handicapping other software developers in the race to market.

E. INTEROPERABILITY, STANDARDS, AND INFORMATION DISCLOSURE

72. Documented technical standards provide many benefits. One technical benefit of

such standards is the interoperability they enable.

73. Companies sometimes create proprietary extensions to standards. Proprietary

extensions are sometimes helpful and sometimes harmful, depending on the

circumstances.

74. Proprietary extensions to a standard are most likely to be helpful when

technological development has gotten ahead of the standardization process. If there is

consumer demand for a feature, but there is not yet a standard way to provide that feature,

a company may implement the feature rather than waiting for the standard to catch up.

Ideally, the company will then propose a standard based on its extension, and will

participate in the resulting standardization process. This kind of activity is not in

opposition to standards, but merely anticipates the standardization process.

75. However, a company might introduce undisclosed proprietary extensions as a

competitive stratagem designed to fragment the existing standard. When a dominant firm

uses this tactic, it can put existing standards in serious jeopardy. Professor Henderson

DECLARATION OF EDWARD W. FELTEN
PAGE 21

discusses how and when Microsoft has an incentive to follow this “embrace and extend”

strategy.

76. When a proprietary extension is not disclosed, it cannot contribute to

standardization. Undisclosed proprietary extensions to standards generally lead to

fragmentation of the standards, because the public standards body, lacking necessary

Technical Information, cannot produce a standard consistent with the undisclosed

extension. In short, disclosing interfaces promotes standardization. I next provide an

example of how Section 3.b, which requires such disclosure, will have this effect.

F. EXPECTED EFFECT ON KERBEROS IN WINDOWS 2000

77. Microsoft’s version of the “Kerberos” protocol in Windows 2000 illustrates the

expected effect of Section 3.b.

78. Kerberos is a widely used protocol for improving the security of networked

computer systems. Because the Kerberos protocol is a public standard, several platforms

implement it, and these platforms can interoperate.

79. Windows 2000 Professional implements a modified version of the Kerberos

protocol that includes a proprietary extension to the standard Kerberos protocol. Because

Microsoft has refused to disclose its modified Kerberos protocol, non-Microsoft server

Operating System Products cannot implement the modified protocol and consequently

cannot interoperate fully with Windows 2000 Professional.

80. If Section 3.b is implemented, developers of other server Operating System

Products will be able to get the information they need to implement the modified protocol

and allow their products to interoperate with Windows 2000 Professional.

DECLARATION OF EDWARD W. FELTEN
PAGE 22

81. It has been reported that Microsoft has stated an intention to disclose its

proprietary extensions to Kerberos at some point in the future. (RX 22) It is not clear

whether or when this will happen, or what conditions Microsoft will impose on

companies in exchange for access to the disclosed information. In any case, even if the

information is released immediately and unconditionally, Microsoft will have

significantly disadvantaged competing server Operating System Products by withholding

the information for so long. This illustrates the need for the timeliness requirement in

Section 3.b.

82. It is important to note that Section 3.b does not prevent Microsoft from creating

and deploying innovative Interfaces. If Section 3.b had been in effect when Microsoft

released Windows 2000 Professional, it would not have prevented Microsoft from

creating a new version of Kerberos; it merely would have allowed other software to

interoperate with Windows 2000 Professional.

G. OVERALL EFFECT OF INFORMATION DISCLOSURE PROVISIONS

83. I conclude that Section 3.b would effectively address the problem of Microsoft

withholding Technical Information that other companies need to interoperate with

Windows.

V. PROVISIONS ON PRODUCT BINDING

84. The Court found that Microsoft illegally Bound Internet Explorer to Windows

(Conclusions of Law at pp. 25-34), that this Binding harmed consumers who did not want

Internet Explorer, by causing “performance degradation, increased risks of

incompatibilities, and the introduction of bugs” (Findings of Fact at ¶ 173), and that this

Binding harmed even those consumers who wanted Internet Explorer, because it

DECLARATION OF EDWARD W. FELTEN
PAGE 23

“jeopardized the security and stability of the operating system”. (Findings of Fact at ¶

174)

85. I understand Section 3.g of Plaintiffs’ proposal to require Microsoft to undo the

illegal product Binding in which it has already engaged, and to refrain from using

technical means to Bind Middleware Products to Windows in the future.

A. PRODUCT BINDING IMPOSES TECHNICAL COSTS

86. In general, product Binding imposes the same kinds of technical costs on

consumers that the Court found were imposed in the specific case of Binding Internet

Explorer to Windows. These technical costs include reduced performance, increased

memory use, and increased risk of incompatibility, security flaws, and other types of

bugs. This is illustrated by my prototype removal program, which improved performance

and significantly reduced memory use by removing End-User Access to Internet

Explorer. (Felten 6/10/99pm at 13:1-16:7, 19:7-20:21; Findings of Fact at ¶ 181)

87. Basing technical decisions on a desire to Bind products rather than on technical

considerations alone degrades the technical quality of the resulting products. Lowering

quality harms all customers.

B. REMOVABILITY REQUIREMENT

88. Section 3.g allows Microsoft to ship a Middleware Product along with Windows,

as long as Microsoft makes End-User Access to that product readily removable by OEMs

and end users.

DECLARATION OF EDWARD W. FELTEN
PAGE 24

89. The Court has found (at least with respect to Internet Explorer) that from a user’s

point of view, removing End-User Access to a product is the same thing as removing the

product:

The Add/Remove function did not delete all of the files that contain browsing
specific code, nor did it remove browsing-specific code that is used by other
programs. The Add/Remove function did, however, remove the functionalities
that were provided to the user by Internet Explorer, including the means of
launching the Web browser. Accordingly, from the user’s perspective,
uninstalling Internet Explorer in this way was equivalent to removing the Internet
Explorer program from Windows 95. (Findings of Fact at ¶ 165)

90. If Section 3.g were implemented, OEMs would have the option of removing a

Bound product if their customers did not want it. Customers who preferred to use both

products would be able to get them together, but customers who did not want the Bound

product would not be forced to take it. All customers would be spared the technical costs

imposed by Binding.

91. Section 3.g.ii provides that Microsoft lower the price of Windows for OEMs who

remove a Bound product from Windows. The discount is calculated as the ratio of the

binary code size of the removed product (as distributed separately) to the binary code size

of the original Windows product. Binary code size is an objective and easily measurable

quantity that correlates with the cost of developing the products.

C. THE PRODUCT BINDING PROVISION IS NOT BURDENSOME

92. To comply with the product Binding provision, Microsoft’s future Windows

Operating System Products must allow OEMs and end users ready means for removing

End-User Access to any Middleware Product. I will use the term “Unbinding” to refer to

the development of the means of removing End-User Access to a Bound product.

DECLARATION OF EDWARD W. FELTEN
PAGE 25

93. At present, Microsoft is Binding Internet Explorer to Windows 98 and Windows

2000 Professional. Microsoft is Binding several additional products to Windows 2000

Professional, including (at least) Outlook Express, NetMeeting, and Windows Media

Player. Each of these products is available in identical (or substantially identical) form

separately from any Windows Operating System Product.

94. It would not be difficult for Microsoft to Unbind Internet Explorer from

Windows. The Court found that “Microsoft could easily supply a version of Windows 98

that does not provide the ability to browse the Web,” and that “it remains possible to

remove Web browsing functionality from Windows 98 without adversely affecting non-

Web browsing features of Windows 98 or the functionality of applications running on the

operating system.” (Findings of Fact at ¶ 177) As I discussed in testifying at trial,

Microsoft already allows end users to remove about eighty separate components that are

shipped with Windows 98. (Felten 6/10/99pm at 6:7-16; GX 1700)

95. The other products Bound to Windows 2000 Professional should all be at least as

easy to Unbind as Internet Explorer is. Therefore, it will not be difficult for Microsoft to

comply with the product Binding provision.

96. Plaintiffs allow Microsoft six months from the effective date of the decree to

bring itself into compliance with the product Binding provision. Given the facts stated

above, six months is ample time for Microsoft to make the necessary changes to its

products.

D. OVERALL EFFECT OF THE PRODUCT BINDING PROVISION

97. Section 3.g would require Microsoft to undo the illegal product Binding in which

it has already engaged, and to refrain from further Binding of Middleware Products to

DECLARATION OF EDWARD W. FELTEN
PAGE 26

Operating Systems. This will lead to improvements in the efficiency and reliability of

Windows.

VI. PROVISIONS ON OEMS’ RIGHT TO CONFIGURE WINDOWS

98. The Court found that Microsoft illegally forced OEMs to refrain from configuring

Windows in ways that their customers wanted, (Findings of Fact at ¶¶ 202-209, 225-229;

Conclusions of Law at pp. 10-14) and that “These inhibitions soured Microsoft’s

relations with OEMs and stymied innovation that might have made Windows PC systems

more satisfying to users.” (Findings of Fact at ¶ 203)

99. I understand Section 3.a.iii of Plaintiffs’ proposal is intended to address this

problem by requiring Microsoft to allow OEMs to configure Windows in certain ways.

100. OEMs are technically capable of configuring Windows in all of the ways

listed in Section 3.a.iii. In fact, OEMs have expressed a desire to make these kinds of

modifications, in the apparent belief that doing so would allow them to serve their

customers more effectively. (Findings of Fact at ¶¶ 203-205, 210-211, 214)

101. I do not believe that Section 3.a.iii would lead to any degradation of

Windows, because OEMs would have no incentive to make Windows worse. As the

Court found,

If an OEM develops a shell that users do not like as much as Windows, and if the
OEM causes that shell to load as the default user interface the first time its PCs
are turned on, consumer wrath will fall first upon the OEM, and demand for that
OEM’s PC systems will decline commensurately with the resulting user
dissatisfaction. The market for Intel-compatible PCs is, by all accounts, a
competitive one. Consequently, any OEM that tries to force an unwanted, low-
quality shell on consumers will do so at its own peril. (Findings of Fact at ¶ 225)

DECLARATION OF EDWARD W. FELTEN
PAGE 27

102. Nor do I believe that Section 3.a.iii would lead to any appreciable increase

in the fragmentation of the Windows platform. None of the modifications listed in

Section 3.a.iii involves disabling or removing any of the APIs supported by Windows.

103. Microsoft itself causes significant fragmentation of the Windows platform.

For example, between September 9, 1999 and April 21, 2000, the Windows 98 code on

the PC on which I wrote this Declaration was updated at least twenty-nine times. All of

these updates were recommended by Microsoft via their Windows Update service. On

April 21, 2000, Microsoft was offering and recommending at least eighteen additional

updates that I had not yet downloaded and installed. (These numbers do not include the

many updates that provide foreign-language support.) If Section 3.a.iii is implemented,

Microsoft will continue to be the largest source of Windows fragmentation.

104. I conclude that Section 3.1.3 would give OEMs the freedom to configure

Windows, without technically harming consumers.

VII. CONCLUSIONS

105. Overall, I believe that Plaintiffs’ proposal, if implemented, would provide

technical benefits to consumers.

I declare under penalty of perjury that the foregoing is true and correct. Executed on

April 28, 2000, in Washington, D.C.

 Edward W. Felten

