System Design

go/drx-learns-system-design

Presenters: codywilson@, dagafono@, jefftk@, nickgonzalez@, shelov@, tianguo@,
Xiaoyong@

Xiaoyong to talk about goal, format, introduce instructors, expectations of cohort meetings, 3 mins

PRX021

1:23:¢cv-00108

CONFIDENTIAL GOOG-AT-MDL-004076461

Disclaimer

We created this course from the scratch. Thereforeitis

Experimental
Subjective
Incomplete

e & & 9

Skip this slide

CONFIDENTIAL

GOOG-AT-MDL-004076462

Session #1

April 1,2022

CONFIDENTIAL

GOOG-AT-MDL-004076463

Why it is important

e Design for change
e Code iswritten once, but needs to be changed and maintained for years
e Notoptimizing for maintainability results in failed projects,
projects never started due to fear of complexity,
unstable systems, engineering pains
e T[eam’svelocity can vary by orders of magnitude depending on software
design choices.

Speaker: Stan, 5-10 mins

A typical software engineering team can spend 10x-100x more time reading, understanding, debugging, maintaining and
updating the existing code than writing the first version for a given functionality. Given such a ratio, optimizing for a highly-
maintainable codebase over time is a no-brainer investment - and can distinguish a successful software project from a
disastrous one. Lack of modular design, of proper component decoupling is one of the primary reasons for software systems'
early deaths and painful lives of their maintainers. Team'’s development velocity can vary greatly - sometimes orders of
magnitude - depending on software design choices.

How can teams design, write code and change it over time to keep the codebase from becoming rot? What design choices can
get a software project to achieve sustainably high development velocity and keep the engineering team engaged and
motivated?

This course will attempt to present and discuss some design principles and patterns that are essential for building highly-

maintainable, modular systems that can evolve with the real world. C++ will be the focus language, but most of the material will
apply to other object-oriented languages as well.

CONFIDENTIAL GOOG-AT-MDL-004076464

Focus of this course

e Design levels: class, component, API, business model, data model, architecture, binary
e Principles and patterns that help to

o achieve sustainably high development velocity

o prevent the codebase from degrading too quickly (healthy code)

o keepthe engineering team engaged and motivated (healthy team)
e C++, but most of the material applies to other OO languages also.

Speaker: Dmitriy, 2 mins
Class-level & component-level : group of classes
Principal & patterns essential for : velocity, healthy code, healthy teamQ

CONFIDENTIAL GOOG-AT-MDL-004076465

What good looks like...

Short term (months) Long term (quarters)
e Meet changing requirements e Easily update technical infrastructure
e FEasytoon bﬂ?"d e Easily adapt and extend for new
e Easytoworkin parallel requirements
: Ezz: :Z :jistfug Easily validate correctness
@ Bemyli rese abent Resilient to unrelated changes
e Consistent

Speaker: Nick, 2-3 mins

Problems we are designing for

Definition of good and maintainable systems
What bad looks like

Principles we'd follow

Process that aid design (or tools)

Goals -> Principles -> Patterns -> tools

Things reusable from Nick's deck:
Slide 31 “reasons for bad architecture”
#45 design pattern categories

#51 design process

CONFIDENTIAL GOOG-AT-MDL-004076466

Reasons for bad design

Lack of experience

Lack of standards

Time pressures at beginning of project
Underestimate product lifetime
Underestimate maintenance burden
Overestimate stability of requirements
“Fixit later” attitude

® & & & & ¢ o

Product Lifetimes

27Y

22Y

16Y

? N O

Google Ads DOUblEC“Ck

Speaker: Nick, 2-3 mins

For underestimate product lifetime, talk about underestimate the long term impact of a code change.

CONFIDENTIAL

GOOG-AT-MDL-004076467

Principles

Simplicity
Uniformity
Flexibility
Separation of concerns
Testability

Speaker: Nick, 30 secs

Talk about balancing act, making tradeoffs

CONFIDENTIAL

GOOG-AT-MDL-004076468

Simplicity
sem “one” + plek “fold”

Limit the number of concerns per system.

- Easytounderstand / reason about
- Easyto change / maintain

- Easytodebug

- Prerequisite for flexibility

- Prerequisite for reliability

- Not over-engineered

- Not the same as “no design”

Simplicity is prerequisite for reliability - Dijsktra

Speaker: Nick, 3 mins

Simple design is not the same as no design

CONFIDENTIAL GOOG-AT-MDL-004076469

RequestHandler

1] /6

e N

Given a web request figure out if we can write cookies.

E—

CookiePermissionsMgr

"4

PublisherDalaService

GeolocationService

LocalPolicyService

Naive Solution

Simplicity: Example, Cookie Permissions

CookiePermissionsMgr Concerns

the entire http request

the format of the response

rpc service communication

network failure

service failure

business logic for cookie permissions
PublisherDataService
GeolocationService
LocalPolicyService

Nick: 2 mins

CONFIDENTIAL

GOOG-AT-MDL-004076470

Simplicity: Example, Cookie Permissions

ReguestiHandler

Concerns per system

ll 1‘10 ‘\9 - CookiePermissionsMegr

- the entire http request
- the format of the response

- ServiceDataAgrregator
8 - rpc service communication
2 l T 6 7 ¢ T

CookiePermissionshMgr

- netwaork fallure
- service failure

- PublisherDataService
- GeolocationService
- LocalPolicyService

- CookiePermissionslLogic

3 l 4 l 5 l - required inputs for business logic
- business logic for cookie permissions

ServiceDataAggregator

FublisherDataService GeolocationService LocalPolicy Service

Simple Solution

Nick: 2 mins

CONFIDENTIAL GOOG-AT-MDL-004076471

Simplicity: Example, Cookie Permissions

Naive solution Simple solution
e CookiePermissionsMgr is a complex . Eusipeszlct}gic Is fﬁﬂ'att_e‘j _ .
e Toomany concerns ™ r:&:;ﬁe ata aggregation is separate an
. DIffICL:J|t to test e FEasytounit test business logic
e |Inflexible e Easytoadapt to changes in service
e Difficult to reason about architecture +
e Requires integration tests to verify e Easytoadapt tochanges in HTTP protocol
request changes

business logic

Easy to adapt to policy changes
e Inputs and outputs are unclear Y pttopoiicy g

Easy to adapt to changes in rpc protocols
More likely to produce correct results
Easier to debug

Nick: 2 mins

CONFIDENTIAL GOOG-AT-MDL-004076472

Uniformity

Solve similar problems in the same way.

Reduces the number of different solutions
Fewer concepts & patterns to learn (simplicity)
Fewer surprises (readability, maintainability)
Fewer kinds of defects that can occur (reliability)
Easier to adopt (reusability)

e & & & @

Speaker: Dmitriy, 2 minsdIllustration : no flexibility, no simplicity either
Uniformity is about solving problems in the same wayJFollowing this principle results in : Simpler, More Predictable, No
surprisesdJAny solution has potential issuesOUniformity -> Simplicity : by reducing variety of design approaches we make

software simpler.0Uniformity -> Maintainability : implementation is done in a predictable familiar way
Uniformity -> Reliability : Any solution has potential issues - itself or with how we use it

Uniformity -> Reusability : others following the uniformity principle is more likely to re-use your component if it follows it,
because it does things in an “right” expected way

CONFIDENTIAL

GOOG-AT-MDL-004076473

Uniformity Case Study : Function Error Handling

e Make it asynchronous: continuations, Future/promise, Task/AsyncTask, Producer
e Add arenas to the picture

Dmitriy, 2 mins
Design API for producing a value, which may faildOThe right answer is of course : “It depends”. There are valid use-cases for all

of them
There are valid use-cases for all, but the last one is the default. Let's not worry about arenas.

C++11 vs C++17 (RVO)00StatusOr is the defaultOOFuldgo/totw/76
go/totw/labs/statusor-patterns-and-antipatterns

CONFIDENTIAL GOOG-AT-MDL-004076474

Uniformity Case Study : RPC Error Propagation

RPC status with canonical error space

RPC status with custom error space

Custom Error proto in Response

StatusProto in Response

A combination of the above

No consistent propagation within binaries either
Example 1: Line Item PSI error propagation
Example 2 : Rule PSI error propagation

e & & & & & & »

Speaker: Dmitriy, time thd

CONFIDENTIAL

GOOG-AT-MDL-004076475

Uniformity via Standards

Creating and following standards is a way to achieve uniformity.

e Create
o Qutcomes, Processes, Tools, Libraries, Frameworks

o Existence, Quality/Coverage, Up-to-dateness

e Follow
o Scope and quality of adoption
o Pace of adaptation to standard changes

e ..ornot
o Uniformity is not the only criteria (e.g. performance considerations)
Often similar problems are not similar enough (e.g. different constraints)
o Different scopes (team, component, binary, serving stack) may have different standards

Dmitriy, 3 mins

Example : go/c-styleJCoverage includes nuances/exceptions/edge conditionsSE : craft, science, art. Standards can guide, but

also limit by stifling creativity and confuse(]

CONFIDENTIAL GOOG-AT-MDL-004076476

Flexibility

e What we want from our system is always changing
o External factors: ecosystem changes, regulations, publisher demand
o Internal factors: new features, turndowns, optimizations

e Designto help future engineers easily make changes:
o Loosely coupled sections (separation of concerns)
o Elegantly handle understood complexity

e But not too much flexibility! Avoid building things that:

o Solve problems we don't see clearly yet
m Overengineering
m "You Aint Gonna Need It" (YAGNI)

o Are so flexible they can't be well tested
m Beespecially careful with run-time configuration

Owner: Jeff 10 mins for all flexibility

CONFIDENTIAL

GOOG-AT-MDL-004076477

Flexibility example: Genotype

e Client-side engineers used to run experiments with, essentially:

e Not flexible enough: no concept of flags separate from experiments
e Minimal integration with Mendel: logging-only

Owner: Jeff

CONFIDENTIAL GOOG-AT-MDL-004076478

Flexibility example: Genotype

e Genotype introduced flags to the client

e Flags could be tested individually
e F[lags could be combined
e Closer integration with Mendel
Define flags in code, experiment on them with Mendel

Owner: Jeff

CONFIDENTIAL

GOOG-AT-MDL-004076479

(Over-)Flexibility example: GPT Services

GPT was designed to have many Services for different things it could do

Loading ads used the Publisher Ads Service

A lot of design and code to support future engineers who would add Services

But use cases for Services never came up
Eventually removed

=
&

Except for where the publisher-facing APl depends on it

Owner: Jeff
Negative example

CONFIDENTIAL

GOOG-AT-MDL-004076480

Session #2

dory/drx-learns-system-design

April 15,2022

CONFIDENTIAL GOOG-AT-MDL-004076481

“Weakest link” critical to software design

e Limits of the human brain
o Canhold /operate on a limited set of concepts in short-term memory
The Magical Number Seven, Plus or Minus Two
e Limits of human communications
o Limited bandwidth, interpretation difficulties, perception, emotions...
e How do we design for these constraints?
e >90% time/effort spent after first version of code is written

o By many engineers (inc. original author) reading, understanding, debugging, updating
o Subject to these human constraints

Speaker: Stan

CONFIDENTIAL GOOG-AT-MDL-004076482

Single responsibility principle

Single, focused purpose for each module (interface, class, service)
Solve for human design constraint
Modules implemented independently,

interact with each other via clear interfaces
Encapsulation
o Information hiding

e Infrastructure vs business logic
e Different concepts, entities, actors of business logic

o Mapunits to natural problem domain
o Expressindesign, code with natural, ubiquitous language

Speaker: Stan

CONFIDENTIAL GOOG-AT-MDL-004076483

Separation of Concerns

e Coupling: independent modules/decisions/data tied together
o Lackof encapsulation, “leaky” abstraction
Dependence onimplementation details

e Decoupling: only have dependencies where necessary

o |solate decisions where possible

o Modules don't depend on implementation details of each other
o Why?

o Module Y depends on the implementation of module X

m |wanttochange X tofix a“simple” bug
m AllofasuddenY breaks

Speaker: Stan

CONFIDENTIAL

GOOG-AT-MDL-004076484

Example: Producers and business logic

C++ Producers: framework for asynchronous programming

All 1/0 calls - RPC, lookups, file access - should be non-blocking.

e Each producer a graph “node”, activated upon availability of its inputs
(I/O operations completing)

e Significant framework “overhead”:

webserver:Input<Type>, webserver::Output<Type>
OnlnputsReady()

o State-scheduling control: ScheduleStateWithFunction,

ScheduleStateMethodWithFunction, ScheduleStateWithDependencySet...

Should business logic live in producers?

Key points:

Producers could be an example - which relies on regular key-val lookup but does something more

Split infra concerns from data model concerns
Mention they are other options to implement the logic and what considerations (uniformity, inertia) that came into the decision

CONFIDENTIAL

GOOG-AT-MDL-004076485

Example: IP denylists for RTB partners

Problem:

e Bidderswant to block requests from certain IPs or CIDR ranges of IPs
(11.22.33.44,22.33.44.0/24,33.44.55.64/28)
e Dataset mapping IP/range to bidders blockingit:

11.22.33.4 4/32 - A
11.22.33.0/24 = B,D
11.22.33.64/28 = C

e Givenclient IP, find all blocked ranges and bidders
11.22.33.44.91—11.22.33.0/24,11.22.33.64/28—=(B, D, C)

CONFIDENTIAL

GOOG-AT-MDL-004076486

Example: IP denylists for RTB partners

Business logic Infrastructure

e |[ssue an asynchronous batch KeyVal
dataset lookup, schedule a completion
callback

flow

Upon completion, execute business logic
Pass output to the next step in the control

CONFIDENTIAL

GOOG-AT-MDL-004076487

Example: IP denylists for RTB partners

Business logic contract Infrastructure contract

One concern: get blocked bidders

Simple function, inputs and outputs

Easy to read, reason about, test, change
Can delegate to infrastructure abstractions
(raw KV lookup)

e Lookup values for given keys (asynchronously)
e Lowerlevel

CONFIDENTIAL GOOG-AT-MDL-004076488

Example: IP denylists for RTB partners

Business Ioiic contract Infrastructure contract

One concern: get blocked bidders

Simple function, inputs and outputs

Easy to read, reason about, test, change
Can delegate to infrastructure abstractions
(raw KV lookup)

Producer simply delegates to business logic, manages scheduling
Future result becomes producer’s output

CONFIDENTIAL

GOOG-AT-MDL-004076489

Alternative: everything in a producer

Producer’s responsibilities

Accept raw inputs from upstream (TargetingRequest, not focused)
Business logic: find blocked CIDR ranges & blocked bidders

Raw KV lookup

Scheduling, providing outputs

Not focused on a single goal, harder to test, reason about, change...

CONFIDENTIAL

GOOG-AT-MDL-004076490

Anti-pattern: "God class

RTB CalloutHandler roles

Bid request prefiltering

QPS quota throttling

Generating (and mutating!) bid requests
Making callouts

Processing results

2K lines

5K+ lines “unit” test

20 constructor-injected dependencies

Orchestration module”

Single GetBids() public method effectively with 15 arguments

CONFIDENTIAL

GOOG-AT-MDL-004076491

Q&A

dory/drx-learns-system-design

CONFIDENTIAL GOOG-AT-MDL-004076492

Homework for Session #2

e Reflect on a project that you are currently working on or have worked on in the past
regarding:
o Did the project design follow any of the design principles discussed here?
Was it designed with potential change and long-term maintenance in mind?
o Were there any tradeoffs made when considering different principles?
o What was your experience with making changes to that project?
Did it feel fast / slow, rewarding / painful?
Write down a few bullet points re above and share your experience with your cohort.

Each cohort picks one example from the cohort discussions and presents it to the group in
Session #3.

Speaker: Xiaoyong

CONFIDENTIAL GOOG-AT-MDL-004076493

Session #3

dory/drx-learns-system-design

April 29, 2022

CONFIDENTIAL GOOG-AT-MDL-004076494

Cross-serving learning-focused OKR

Objective:
e Builda culture of learning and growth to heighten individual and team impact
Key Results:

e Complete the pilot program go/drx-learns-pilot
o 4-5instructor-led sessions, combined with cohort-based learning.
o Attendance: 70+% of L3 and L4 SWEs participating in 2+ sessions.
e Create plan for the full program {(based on learnings from the pilot)
o Create and align on the set of baseline expectations for what L3/4 eng should know regarding system
design and project impact
o Creatematerials for program
o Satisfaction of program as assessed via regular surveys
o Asupporting structure to encourage this kind of program, e.g. recognizing/rewarding teaching and
volunteering

CONFIDENTIAL GOOG-AT-MDL-004076495

Testability

Levels of testing

M ‘
Higher fidelity - better represents production

Integration testing Higher costs (RTT, infrastructure, debugging...)

Unit testing

Speaker: Stan

CONFIDENTIAL GOOG-AT-MDL-004076496

Designing for testability: unit tests

e Testonly public API, interface contract

Avoid testing implementation details - anything that isn’t important for the contract

e Relyondependencyinjection

O

-

i}

Inject dependencies as mocks or test implementations
Allows to focus on testing a single unit

e Testability + separation of concerns = synergy

o

Virtuous loop: SoC benefits testability; designing for testability benefits SoC.

Speaker: Stan

CONFIDENTIAL

GOOG-AT-MDL-004076497

Designing for testability: unit tests

e Testing side effects (1/O, calls to mutator methods): more complex
Avoid side effects in design unless absolutely necessary
o Define only essential side effects - explicitly as part of the contract
Test those - using mock or test dependencies
e TDD: write tests before implementation - against the interface contract
o Thenimplement in the simplest possible way to make tests pass

Speaker: Stan

CONFIDENTIAL

GOOG-AT-MDL-004076498

More on test-driven development

e Leads to simplicity: only minimal implementation that satisfies unit tests
e Benefits APl design

o Focus on the interface first, write and feel how the contract will be used...

o Before implementing: avoids “tail wagging the dog” (implementation dictating API design)
e Incentivizes designing and building for change

o Write minimal set of test cases that matter — minimal implementation that matters —
faster test and implementation changes in future

e |[terative flow: add a test case that fails, then make it pass via implementation
e Ensuresclose to 100% test coverage
o Nocodewritten that's not needed to satisfy test cases
e Results in higher quality, lower defect ratio — higher velocity of delivery,
lower debugging / troubleshooting costs

Speaker: Stan

CONFIDENTIAL

GOOG-AT-MDL-004076499

Example

|P denylist lookup unit test

Speaker: Stan

CONFIDENTIAL GOOG-AT-MDL-0040763500

Cohort Presentations

CONFIDENTIAL

GOOG-AT-MDL-004076501

Cohort 5: Passthrough BOW on DFP = DFP Inreds

Before

go/dfp-inred-passthrough

Use cases, Apple News. DFP pubs want to serve ads directly into the Apple News iOS app. Publisher Partners (e.g. Turner, WaPo,
Conde) want to book campaigns directly into Apple News inventory using their own DFP network. Apple sends a server-side
request to its special fee-exempt DFP account, which then forwards to the publisher's DFP.
impression around 357,671,835

total DRX impression: 123,390,020,240

~0.3% of DRX traffic
At certain point, we wanted to deprecated this traffic. However, some ongoing projects are leveraging this traffic, e.g. go/dfp-

video-partner-inventory-sharing and go/am-to-am-inventory-sharing. These new use cases indicate that even though the traffic
is low currently, cross-publishers usage will increase in the future.

The initial design was proposed over 10 years ago.

It's more of a hack rather than a well thought system design. It was a pain in the system.

it blurs the lines between internal and external APIs, and have historically required poking custom holes through public APIs
with special handling, which is error prone.
not flexible. If you want to add a signal, you need to add it to the redirected_url. It's difficult to figure out what happened, as it's
a long way for outer SM to inner SM. Inner Bow processing needs to be understood, to make sure the signal is added correctly.
Unnecessary re-processing of the request (e.g. Geo resolution) for the redirected request, which increases the latency. For the

signals that are the same for outer and inner request, we don’t need to process again. mention Disney

rendering is implicit and difficult to understand, which is also error prone. There were different ways to concatenate the
clickstring & viewstring

CONFIDENTIAL

GOOG-AT-MDL-004076502

concatenated through click macro, destination_url
not concatenated for certain creative types.

To resolve these issues and optimize the traffic, we propose to remove the HTTP callback through DFP Bow, and further to
implement DFP->DFP inred ad retrieval as a first class concept of DFP stack.

We've completed the milestone of this project, which is to make the Bow passthrough.

CONFIDENTIAL GOOG-AT-MDL-0040763503

Cohort 5: Passthrough BOW on DFP = DFP Inreds

Before After

Simplicity: Simplicity:
= Double parsing, rendering 4+ Single parsing, rendering
— 8 Inner headers for Apple News <+ No more inner headers
Uniformity: : Uniformity:
— One-off hacky solution 4+ Consistent ad retrieval (The ART Project)

— Different ways to concatenate i 4+ Consistent way to concatenate clickstring
clickstring and viewstring and viewstring
Flexibility: i Flexibility:
— Difficult to add new features i -+ Flexible for adding features
Decoupling: Decoupling:
— HTTPOverRPC API . - No more HTTPOverRPC API
= Blurs the internal vs external line i - Simple library cal|

I
qgo/dfp-inred-passthrough

Make DFP Bow Passthrough on DFP->DFP Inreds (go/dfp-inred-passthrough)
Did the project design follow any of the design principles discussed here?
Simplicity

Easy to understand / reason about

current phase:

send SupermixerRequest instead of inred url

single rendering instead of double rendering

Easy to change / maintain

easy to add signal

Uniformity

Solve similar problems in the same way.

align with ART project. Consistent ad retrieval

Flexibility

easy to add feature

Decoupling: only have dependencies where necessary

no longer depends on HTTPOverRPC API

it blurs the lines between internal and external APIs, and have historically required poking custom holes through public APIs
with special handling, which is error prone.

Was it designed with potential change and long-term maintenance in mind?
potential change: migrate video playlist traffic and video inventory sharing
long-term maintenance: deprecate HttpOverRpc

Were there any tradeoffs made when considering different principles?
cannot pass nested ContentAdResponse back to Bow

What was your experience with making changes to that project? UDid it feel fast / slow, rewarding / painful?
slow:

too many fragile assumptions

How the clickstring/viewstring should be concatenated

the |]SON wrapper should use inner/outer creative

whether client_enviroment should be consistent

bugs:

page_correlater

certain creative types/ viewstring not concatenated

no one knew how it works; required digging & exploring

testing

experiments

DFP AB test

CONFIDENTIAL GOOG-AT-MDL-004076504

rewarding

CONFIDENTIAL GOOG-AT-MDL-004076305

Cohort 2: Arbitrary Mediation Chain Rendering

Before

go/arbitrary chain rendering

CONFIDENTIAL GOOG-AT-MDL-004076506

Cohort 2: Arbitrary Mediation Chain Rendering

Before
Simplicity:
— Partition and merging
Uniformity:

— Different representations of 3p
networks and google networks
Flexibility:
— Hard coded assumption on the
ordering of networks
Separation of Concerns:

— Chain partitioning and resembling

After

Simplicity:
4+ No partition and merging
Uniformity:
4+ Uniform representation of 3p
networks and google networks
Flexibility:
+ Able to handle more flexible
chains, i.e, interleaving 3p & 1p
Separation of Concerns:
: focus on rendering
Testability:
<+ Rendering A/B testing, BOW

I'EQI'ESSiDI'I test go/arbitrary chain rendering

CONFIDENTIAL

GOOG-AT-MDL-004076507

Cohort 7: BritaEnforcementProducer

Producer initially designed & built to be
used exclusively in DFP Supermixer, later
needed CATZ2 support
New design: Template out the producer to
accept either Stored Settings, or anything
with network id ()
Better solution: Migrate all logic to new
library that handles business logic, have
producer take in network_id instead
Overly flexible: “Maybe we’'ll need to know
what type of stored settings we’re using!”
o Spoiler alert: We don't
Not simple: Templated code in header
file, not intuitive to read code if unfamiliar
Easy to add new extraction results, but
just as easy to do this with the better
design

-~

~

DFP Stored
Settings

.

Brita
Enforcement
Producer

v

<brita outputs>

L/

X

DFP Stored
Settings

CAT2 Stored
Settings

N

Brita

Enforcement
Producer <T>

v

<brita outputs>

CONFIDENTIAL

GOOG-AT-MDL-004076508

Cohort 8: Minimum Bid to Win for Header Bidding

go/mbtw-design

CONFIDENTIAL GOOG-AT-MDL-004076509

Cohort 8: Minimum Bid to Win for Header Bidding

e Uniformity: Design was influenced heavily by prior art of server-to-server callouts.
PostbackProxy and Harpoon were used to execute the callouts.

e Flexibility: Some effort was made to make it easy to use the system outside header
bidding contexts (in the future). Where a new abstraction was needed, it was made
generic. If an existing abstraction was available, it was used directly, even if it was
header-bidding specific.

e Single Responsibility Principle: Responsibility was considered at a system
architecture level. For example, we decided Supermixer should not be responsible for
executing the callouts directly - instead that responsibility is delegated to
PostbackProxy. This introduces complexity, but was a worthwhile tradeoff.

e Decoupling: While all the new Supermixer logic was run within a Producer, the actual
Producer code was just coordinating inputs/outputs. Actual processing (i.e. forming
the URL) was done by library code, which made things more readable and easier to
test.

CONFIDENTIAL

GOOG-AT-MDL-004076510

Cohort 4&6: Deprecating adx-{repeated}-query-fields

Before

Credits: go/auction-logaging

Cohort 4&603Since 2016 - SSQ initiative - SSQ Infra - @henndiylHard to manage - pipelines owned across serving
Simplifying protos - while no-opQ

CONFIDENTIAL GOOG-AT-MDL-004076511

Cohort 4&6: go/deprecating-adx-repeated-query-fields

Before

Simplicity:

— Aggregation at query level doesn't establish
separation of concerns / single responsibility
principle. No granular control.

Uniformity:

= Not uniform across products - Video pods, single

winner eltc.
Flexibility:

— Priorities changed over time causing the proto to
be a melting pot for multiple use-cases.

= Hard no-op change

Decoupling:

= Leng time maintenance and tech-debtis a
concern. Testability is a major concern across
pipelines since the protos seem overloaded in
usage. Same protos tested differently across
codebase.

After

Simplicity:
+ More granular control, but single responsibility
principle might still not be achieved.
Uniformity:
+ Not uniform across products, but provides
granular control in aggregation.

Flexibility:

+ Same as above, as it improves testability
and unrformity in application of proto.

Decoupling:

o Buyside-sellside separation is a major

win. {go/j4w-rtb-buyer-identity)

Thoughts -
+ As a nooagler it is slow but rewarding, as one gets to
understand a lot about the serving stack

CONFIDENTIAL

GOOG-AT-MDL-004076512

Session #4

dory/drx-learns-system-design

May 13,2022

CONFIDENTIAL GOOG-AT-MDL-004076513

Cohort 1: Interscroller and Fullscreen Inline

e We had initially planned on implementing a new rendering for Interscroller ads
o We chose to pivot when we realized that it was not revenue positive to have the new
rendering
¢ What went well
o Uniformity: We set the different responsive ad formats all the same way.
e What was difficult:
o Flexibility: We were sort of able to pivot (and ultimately did), but it did take a bit longer

than | would have liked.
o Decoupling: All size decisions are incredibly complicated and intertwined. This means that

figuring out what is due to one reason or another is difficult

e OtherConsiderations:
o Separation of Concerns: All sizing decisions done in one place, but the specific decisions are

intertwined.

CONFIDENTIAL GOOG-AT-MDL-004076514

Cohort 3: Publisher Provided Signals Evolution

PPS Alpha » PPS Beta

“Temporary, proof of concept, E2E test” -> “Permanent, product feature, commercialization”
Uniformity: Use Pipes & Tables, Dynamic Files, User Data Accessor, User Data Entity
Flexibility: Allow for new signal sources and data lookups

Separation of Concerns: High-level functionality exists in the appropriate part of the stack

o Datalookup in Supermixer request processing; Privacy decisions in UDA; UDE generation in
IBA

® Coupling between Supermixer and IBA Server + special
exceptions due to privacy policy propagation
o UDE created in Supermixer; “Special” column accessor in IBA to bypass privacy restrictions
e Simplicity/Separation of Concerns: Low priority at low-level design AKA everythingin a
producer

CONFIDENTIAL GOOG-AT-MDL-004076315

Design Patterns

CONFIDENTIAL

GOOG-AT-MDL-004076516

Inter faces

CONFIDENTIAL

GOOG-AT-MDL-0040763517

Interfaces

Separation of concerns -> Modularity -> Interfaces
Boundaries between components

C : function declaration

Java:interface

C++: pure abstract class

Building blocks for most design patterns

Dmitriy

CONFIDENTIAL

GOOG-AT-MDL-004076518

Interfaces : design principles

Cohesive Collection of related functions

Opaque Encapsulates / hides the implementation details

Independent Independent of other systems, infrastructure and future product direction
Narrow Does one thing well

Stable Not likely to change

Interfaces define the language of the system.

Nick

CONFIDENTIAL GOOG-AT-MDL-004076519

Interfaces Example: Debug server event logging

Log all interesting events that occur during startup and request processing for a complex backend RPC server.

Simple Solution Likely scenarios

Add LOG(INFQ) calls whenever)
something interesting happens.

Now let’s trace a specific request
through the system

[t’s too noisy, only log events for
specific requests.

It's too hard to access, just display the
log in a web page via a debug end point.
| think there might be problem, let’s
track “X” in real time.

| can’t automate anything, can you also
write a structured log?

Nick

CONFIDENTIAL

GOOG-AT-MDL-004076520

Interfaces Example: Debug server event logging

Nick

CONFIDENTIAL GOOG-AT-MDL-004076521

Nick

Interfaces Example: Debug server event logging

Event System

A great alternative example is Superfilter:

CONFIDENTIAL

GOOG-AT-MDL-004076522

Interfaces Example: Debug server event logging

Log all interesting events that occur during startup and request processing for a complex backend RPC server.

Simple Solution

Inflexible

Exposed implementation details
Much more difficult to maintain
Not cohesive

Event System

Simple

Easy to test

Establishes an implementation
independent language (Event, Notify,
Handle)

Encapsulates implementation details
Flexible

Nick

CONFIDENTIAL

GOOG-AT-MDL-004076523

Homework

e Design aset of C++ interfaces for one of the options below
e DrawaUMLdiagram (optional)

— 5l > tWikined
e Improve as we progress through the course

Options:
e DoryBackend
o Listentries, add entry, vote, leave comment

e Moma Profile Backend
o Search profiles, get profile, get reporting chain and teams

Each cohort to prepare a slide for discussion in the next sessionon 5/27/2022.

Dmitriy

CONFIDENTIAL

GOOG-AT-MDL-004076524

Discussion : Models before Modules

Are 10 modules/interfaces better than 17

Poorly desighed interfaces can be counterproductive
Models, then modules

Business and infrastructure concerns/abstractions and their interactions
Interface : Lightweight formal documentation of domain concepts

Dmitriy, then discussion

CONFIDENTIAL GOOG-AT-MDL-004076525

Session #5

dory/drx-learns-system-design

May 27,2022

CONFIDENTIAL GOOG-AT-MDL-004076526

Survey

Please fill out go/drx-learns-survey-2

CONFIDENTIAL

GOOG-AT-MDL-004076527

Today we’ll discuss homework on Interfaces

e Design aset of C++ interfaces for one of the options below
e DrawaUMLdiagram (optional)

— 5l > tWikined
e Improve as we progress through the course

Options:
e DoryBackend
o Listentries, add entry, vote, leave comment
¢ Moma Profile Backend
o Search profiles, get profile, get reporting chain and teams

Each cohort to prepare a slide for discussion in the next sessionon 5/27/2022.

Dmitriy

CONFIDENTIAL

GOOG-AT-MDL-004076528

Cohort 2 - Backend

Presenter: trentunderwood@

CONFIDENTIAL

GOOG-AT-MDL-004076529

Cohort 2 - FrontEnd Widgets

CONFIDENTIAL

GOOG-AT-MDL-004076530

Cohort 1

Presenter: Alberto

CONFIDENTIAL

GOOG-AT-MDL-004076531

Cohort 5

Presenter: Jackson
Dory backend

CONFIDENTIAL

GOOG-AT-MDL-004076532

Cohort 7 (backend)

Presenter: Zayd

CONFIDENTIAL

GOOG-AT-MDL-004076533

Cohort 7 (hiah-level)
@ a a

oo =

Frontend G

pdata e aton Gt b1
ey berihoms sl s gk T Far

] A BT posiComment @13 g L

et il st il pannl A oMM

geilogs vl M (e e

el L v

Pro T

r
\\l l L Brvrian] A1 ["‘:}

4 (

Service Layer

Li
Ardrmin and Monitoring Servics Rirtin

Buginoss Sorvios

MOMA Profile Service

A
Data Layer © = ¥

Log Store Cache Relational DB Static File Store

CONFIDENTIAL GOOG-AT-MDL-004076534

Cohort 8

Presenter: Tian

CONFIDENTIAL

GOOG-AT-MDL-004076535

Cohort 3

Presenter: Mark Liang

CONFIDENTIAL

GOOG-AT-MDL-004076536

Cohort 3

CONFIDENTIAL

GOOG-AT-MDL-004076537

Cohorts 4 & 6

Presenter: Ben

CONFIDENTIAL

GOOG-AT-MDL-004076538

CONFIDENTIAL GOOG-AT-MDL-0040763539

Session #6

dory/drx-learns-system-design

June 13,2022

CONFIDENTIAL GOOG-AT-MDL-004076540

Encapsulation

Principle: hide what might change

e E.g., dataanddatastructures

o internal field not critical for the APl consumer
state that should affect the behavior of the object, e.g. via polymorphism
AuctionCandidate:is_adwords(), AuctionCandidate::is_managed_tag()
e FE.g, algorithm
o ADT for list: array vs linked;
bubbkle sort vs. quicksort
selecting an auction winner
e E.g., technology
dataset access, logging, RPC calls
concurrency/threading mechanisms

Credit to ghf@ for slides on encapsulation

79

CONFIDENTIAL GOOG-AT-MDL-004076541

Schedule

6/3 - Encapsulation + dependency injection + HW
6/27 - Composition vs. Inheritance + Role Interfaces + Adapter

7/11 - Domain-driven design

Survey responses (24)

CONFIDENTIAL GOOG-AT-MDL-004076542

Encapsulation is widely misunderstood

These are often misunderstood as “encapsulation”:

e Separate interface and implementation
o Goodidea, but alone it doesn't avoid ripples
e Hide the implementation
o Changes to hidden code can still hurt you
Can't do this in google3 anyway
e Write getters and/or setters for data fields
o getBalance(), setBalance()

81

CONFIDENTIAL

GOOG-AT-MDL-004076543

Insight: Some interfaces are better than others

Notional “levels” of modularization What happens
e LevelO: Nointerfaces e Bigball of Mud pattern
e Level 1: Functional interfaces e Changes ripple through the system
Procedural programming
Classes and OQOP
e Level 2: Encapsulation /info hiding e Changes arelocalized

82

go/design-catalog/big-ball-of-mud

CONFIDENTIAL

GOOG-AT-MDL-004076544

Benefits of encapsulation

e Changeisinevitable
o .. butchanges that ripple are painful. What happens if we minimize ripples?
o Callers can work on their own roles, avoid unnecessary churn
o Implementers get freedom to optimize & refactor
e Shorter development time
o Enabling parallel work streams (same as any interface)
o Minimizing ripples; less rework after refactoring (unique for info hiding)
e Flexibility
o When inevitable change happens, want to rearrange chunks, not start from scratch
e Comprehensibility
o APls become easier to understand
o Minimizes the knowledge needed to proceed (need not look into the box)

83

CONFIDENTIAL GOOG-AT-MDL-004076545

Encapsulation and Hyrum'’s Law

Hyrum’s Law Encapsulation: hide what might change

With a sufficient number of users of an API, e "Hide" means“avoid dependencies on”

it does not matter what you promise in the contract: e Hyrum’'s Law says that, at scale,

all observable behaviors of your system you can't eliminate dependencies

will be depended on by somebody. e So,are encapsulation and contracts
useless?

Examples

Order of sizes, deals, billing IDs in RTB bid requests
impacting bidding behavior

“Criteo currency outage” (2019):

inferring currency from geo, O($MM) impact

84

This is ghf@’s viewpoint

Analogy: red lights can’t stop all cars from hitting you in an intersection -- but they still help a lot and we shouldn’t abandon
stoplights

Longer version:

Starting around 1970, mathematicians thought programming should be done their way

They had some early success

They said the future was “proving code correct”

Correct with respect to what, exactly? The specification.

We have largely abandoned the idea of large-scale program proofs (except in the small)
Specification is helpful for other reasons, including encapsulation and DBC

Hyrum'’s law describes the upper limit of how much specs / contracts / encapsulation can help

CONFIDENTIAL GOOG-AT-MDL-004076546

Encapsulation example: RTB AdSourcelnterface

Responsible for ... retrieving and processing the matching ads, and sending the candidate ads to

the auction.
Which methods support encapsulation?
Which methods don't?

CONFIDENTIAL

GOOG-AT-MDL-004076547

Why SWEs may fail to encapsulate

Parnas identified these obstacles:

]
L
L
L
]

“flow-chart instinct” vields ugly interfaces

“seems like too much planning”

“bad models” (cultural obstacles)

“extending bad software”

“too bad we changed it” - design not communicated

86

CONFIDENTIAL

GOOG-AT-MDL-004076548

Dependency Injection

How can a class be independent from the creation of the objects it depends on?
How can an application, and the objects it uses support different configurations?
How can the behavior of a piece of code be changed without editing it directly?

We'll focus on Constructor Injection.
Dependencies are interfaces

Cody’s prep: https://docs.google.com/presentation/d/170Frog3ypSx6k-7tHIN1X8R72ZhAjG2XZccOtv4586Q/edit?resourcekey=0-
iIhGBsvsflasEHMKX8ep3Nw#slide=id.p

CONFIDENTIAL GOOG-AT-MDL-004076549

Dependency Injection: Header Bidding

e We have a set of bids coming from the client
e These bids may or may not be considered eligible as ads
o No buyer presence in a yield group for the query
o Noconsent from the user for that buyer to serve
e Naive design:
o Add relevant parameters to the function creating the ads, and drop them as needed
e Dependency Injection design:
o Put each decision behind an interface

o Passinterfaces to the function
o The function then just asks “is this allowed”

CONFIDENTIAL GOOG-AT-MDL-004076530

Naive Interface

Very bulky, nine complex parameters
Bag of data without meaning

*why” are these the inputsisn't clear
Testing the code requires testing many
input combos

HeaderBiddingAdCreator

o s o f f oo

Bid Data

Company ID Map

Company Configuration Info
Yield Group Info

Currency Info

Privacy Info

User Info

AddHeaderBiddingAds

CONFIDENTIAL

GOOG-AT-MDL-004076551

Better - Add some Modularity

Break one decision with multiple concerns

Into parts.
YieldGroupCompanyMapping: Does the
pub allow this bidder on the query?
HeaderBiddingVendorConsent: Does the
user allow this bidder on the query?
Owning class coordinates construction.
All the inputs to these classes are still input
to HeaderBiddingAdCreator.
Still need to test creation and interaction o
subclasses.

Can't mock subclasses for tests.

CONFIDENTIAL

GOOG-AT-MDL-004076552

Best - Inject APIs into the Ad Creator

e Dependency Injection in the constructor
o Pass the "decision” classes Into the
HeaderBiddingAdCreator constructor.
o Instead of creating them as part of
construction.
e [nputs have meaning, instead of being bags
of data/primitives
e (Canuse mocks for testing
Only have to test “decision” class AP
interactions, not the classes themselves.
e Cantest APl boundaries, instead of a

monolith

CONFIDENTIAL GOOG-AT-MDL-004076553

Dependency Injection : Filtering

e Foragivenad, dorequest, publisher, and policy constraints allow it to serve?
o |Ifnot, filter it
A common API for different kinds of candidates
Each filter operates on that same API per-candidate
But each filter may have different non-candidate state

o For lots of different kinds of filters, how can we create a framework to add and change them
frequently?

CONFIDENTIAL GOOG-AT-MDL-004076554

Dependency Injection - Filtering

A pure virtual filter interface defines a
simple API for each filter.

Each filter may take different
dependencies to help with their
decisioning.

One filter can even take other filters as
Injected dependencies.

CONFIDENTIAL

GOOG-AT-MDL-004076555

Dependency Injection - Filtering

CONFIDENTIAL

GOOG-AT-MDL-004076556

Dependency Injection - Filtering

CONFIDENTIAL

GOOG-AT-MDL-004076557

Dependency Injection - Filtering

e Eachfilter can be tested separately.
e (Canuse mocks to test the filter manager.
e Separates each filtering decision into its own module

CONFIDENTIAL GOOG-AT-MDL-004076538

Dependency Injection : SelectAndResolveController

Very wide APls

Tight coupling

Hard to test

Hard to modify

Hard to extend

2K lines of “glue code”

A lot of mutable state

Disclaimers

The current state isn't anyone’s fault

The description of the current state may not be fully accurate

This is not an actual refactoring proposal, the diagrams are for illustrative purposes

CONFIDENTIAL GOOG-AT-MDL-004076559

CONFIDENTIAL

Dependenc

Injection : SARC

GOOG-AT-MDL-004076560

CONFIDENTIAL

Dependenc

Injection : SARC

GOOG-AT-MDL-004076561

Dependency Injection : SARC

Data dependencies get injected directly into
their consumers vs being plumbed through
multiple layers of “parent” components.

CONFIDENTIAL GOOG-AT-MDL-004076562

Dependency Injection : SARC

Modular

No coupling

Narrower APls

Easier to read, modify, extend and test

® O o o

Disclaimers
e The current state isn't anyone’s fauit
e Thedescription of the current state may not be fully accurate

e This is not an actual refactoring proposal, the diagrams are for illustrative purposes

CONFIDENTIAL

GOOG-AT-MDL-0040763563

Encapsulation: discussion

- Canyou think of an example of poor encapsulation in your project?
- How could that example benefit from encapsulation?

102

This is ghf@’s viewpoint

Analogy: red lights can’t stop all cars from hitting you in an intersection -- but they still help a lot and we shouldn’t abandon
stoplights

Longer version:

Starting around 1970, mathematicians thought programming should be done their way

They had some early success

They said the future was “proving code correct”

Correct with respect to what, exactly? The specification.

We have largely abandoned the idea of large-scale program proofs (except in the small)
Specification is helpful for other reasons, including encapsulation and DBC

Hyrum'’s law describes the upper limit of how much specs / contracts / encapsulation can help

CONFIDENTIAL GOOG-AT-MDL-004076564

Homework

e |dentify ways to improve encapsulation in your codebase?
e Find examples of Dependency Injection in your codebase
e Find opportunities for using Dependency Injection in your codebase

CONFIDENTIAL GOOG-AT-MDL-004076565

Session #7

dory/drx-learns-system-design

July 18,2022

CONFIDENTIAL GOOG-AT-MDL-004076566

Composition vs. Inheritance

Composition

Inheritance

CONFIDENTIAL

GOOG-AT-MDL-004076367

Composition vs. Inheritance

StaticContentService KVService
- cache - ey _value map
Example: + GetContent{name): siring + read(key) : string
+ writa(key, valug)
Implement a key value storage ﬁ
) .) v Extands
service that also retrieves static P— \ /
- service: MyService
content. | L S o
+ Start()
+ Stop()

We can use inheritance to reuse existing
implementations, but...

CONFIDENTIAL GOOG-AT-MDL-004076568

CAN'T DO THIS!

AN

Composition vs. Inheritance

AuthanticatedService

+ Login{name) : string
+ IsLoggedin(connecion) : bool

Emn};'? EM&

... sharing implementation through

.) Ca ~
inheritance has limitations StaticContentService KVService
- cache - Kay_value_map
= tightly CUUplEd + GetGontentiname): string + readikey) : siring
"SR L 1 R\ + writa(kay, valua)
- “diamond of death o ST
)) . Server ' Extands
- difficult to maintain pre—————r— N
: i & — :: MySenice
- limited flexibility + Stan)

- compile time only

CONFIDENTIAL GOOG-AT-MDL-004076569

Composition vs. Inheritance

Server MyService
Prefer composition over i | O DesOm e |
. . . . + Start() il - kv : KVService -
implementation inheritance. + Stop) + Logininame)
+ Witalsey, vauo)
- loosely coupled / l
- can support runtime
. . KVService AuthenticatedService StaticContentService
reconfiguration g — ~cache

+ Login(nama) : siring
+ lzLoggedin(connection] : bocl

- naturally supports + ety s + GeiCanleni(namel: sirng
encapsulation

CONFIDENTIAL GOOG-AT-MDL-004076570

Composition vs. Inheritance

Composition Inheritance
- models a“has a” relationship - models an “is a” relationship
- objects communicate - well suited for interfaces
through interfaces - Inheriting for implementation
- can /should be combined has limitations
with inheritance for - canbe easier at first, but
interfaces quickly becomes
- can be difficult to get right unmaintainable

CONFIDENTIAL GOOG-AT-MDL-004076571

Adapter: CAT2AdAdapter

e Buyside has arepresentation of an ad
o Tobid
e Sellside has a representation of an ad
Todecide a winner
o Togenerate aresponse to Bow

e Buyside doesn't want pollute their interface with sellside details
Sellside doesn't want to maintain buyside data structures
e Howdowe decouple? Enter, adapters

CONFIDENTIAL GOOG-AT-MDL-004076572

Adapter: CAT2AdAdapter

CONFIDENTIAL

GOOG-AT-MDL-004076573

Wrappers and Adapters

Use case for multiple implementations of a single interface
Reuse a class that doesn’t implement an interface client code needs
Provide an alternative interface for an existing class

[_"\

(Hopefully) don't have to change the interface of the existing class

e “Adapting” class A to implement the interface of class B

o)

Create a new class AtoBAdapter implementing class B with methods of class A

CONFIDENTIAL

GOOG-AT-MDL-004076574

Role Views

e Variation of the Adapter/Wrapper pattern

e Ause-case specific interface on top of a large proto/struct/class

e Gooddatamodel !'= Good APIs

CONFIDENTIAL

GOOG-AT-MDL-004076575

Role Views : Examples

e API|Narrowing:

Which fields are being read?

Which fields are being written?

e APICustomizations:

return for a proto field - a better AP| than checks.

return MonetaryValue instead of MonetaryValueProto

CONFIDENTIAL

GOOG-AT-MDL-004076576

Role Views : CAT2 Auction Video Request Inputs

CONFIDENTIAL GOOG-AT-MDL-004076577

Role Views

Pros

3 0 O O 0o

)

Cons

API| Narrowing

API| Customization

Better encapsulation

Better testability

Fuller APl ownership

Refactoring Enablement / Insulation

More work (short-term)

CONFIDENTIAL

GOOG-AT-MDL-004076578

Homework (pick one option)

Option 1 - Composition vs Inheritance

Discuss with your cohort situations where implementation inheritance might be preferred over composition. Be prepared
to answer the following guestions:

o What were some of the situations that were discussed?

o Werethere anysituations discussed where the group ultimately decided that inheritance was the better solution?
Why?
Why not?

Feel free to use any of the examples below:

Testing frameworks

Integration / unit test data sharing
Execution frameworks like producers
Logging frameworks

Option 2 - Adapters / Role Views

e Find example(s) of Adapters/Role Views in your codebase
e FInd potential use-cases for Adapters/Role Views in your codebase

CONFIDENTIAL GOOG-AT-MDL-004076579

Session #8

dory/drx-learns-system-design

Aug 15,2022

CONFIDENTIAL GOOG-AT-MDL-0040763580

What is domain-driven design?

“Domain-driven design is both a way of thinking and
a set of priorities, aimed at accelerating software
projects that have to deal with complicated
domains.”

- Eric Evans

https://www.dddcommunity.org/uncategorized/preface

CONFIDENTIAL GOOG-AT-MDL-004076581

What is domain-driven design?

Philosophy, a way of thinking about delivering software
A way to communicate about a software project, the underlying domain and the code

An approach to software development

Software can be a model representative of the real world domain
Concepts in domain model directly tied to code

Focus on important: the core domain and domain logic
Hide the rest (infrastructure, implementation details)

CONFIDENTIAL GOOG-AT-MDL-004076582

Eric Evans classic book EF I N
y

[ackling Complexity in the Heart of Software

https:.//www.amazon.com/Domain-Driven-
Design-Tackling-Complexity-
Software/dp/0321125215

CONFIDENTIAL GOOG-AT-MDL-0040763583

What is a model?

- Real-world problems are messy

- Modelis NOT a perfect copy or description of the real world
- Messiness of the real world might impede efficient software development

- Representation of some subset of a real world problem...

- ..thatis useful, convenient and efficient for designing and developing software
- Caninclude concepts (objects), their lifecycle and relationships

- Cansystematize, organize, simplify or give aliases to the real-world objects

CONFIDENTIAL GOOG-AT-MDL-004076584

Effective modeling ingredients

Bind model & implementation
Cultivate a language based on model
Develop a knowledge-rich model

Model is not “just data” - captures rich interactions for solving complex, real problems

Distill the model
Remove unneeded concepts
Brainstorm & experiment

CONFIDENTIAL

GOOG-AT-MDL-004076385

Knowledge crunching & Continuous learning

- lteratively try different models & identify most successful one

- Lots of discussions between engineers & domain experts

- Continuously refine the model based on better understanding of domain
- Implementation from early prototype to richer model via refactoring

What does your team do?

- Has your team built a meaningful model(s) for your project(s)?

- Are these models universally known to / agreed upon by team members?
- Does your team practice knowledge crunching?

- Does your team refactor when the model changes?

CONFIDENTIAL

GOOG-AT-MDL-004076586

Knowledge crunching techniques

Drawing mind maps / diagrams

Domain expert interview

Review of existing domain-related artifacts (documents, diagrams, ...)
Prototypingin code / tests

Experimentation/ Trial and error

Refactoring

CONFIDENTIAL GOOG-AT-MDL-004076387

Translation slows down communication

Does your code use the same terminology / language
as business people and users?

Do you have to translate from language in a PRD
to concepts in your codebase / talking to peer eng?

Core philosophy of DDD is utilize the same language from PRD to unit tests - within clear boundaries

CONFIDENTIAL

GOOG-AT-MDL-004076588

Ubiquitous language

e Everyone, technical and nontechnical, must speak the same
ubiquitous language:
o usethe same terms, and
o givethe same namesto
o the same concepts,
o within specific boundaries.
e Used incode, among engineers, domain experts, product / business stakeholders
o Remove the “translation layer” between engineer and business talk

Core philosophy of DDD is utilize the same language from PRD to unit tests - within clear boundaries

CONFIDENTIAL

GOOG-AT-MDL-004076589

Example: What is a Buyer? - Business Perspective

e Thesetend to be real world entities
e Tied tocompanies or people

e Example entities
Agency - A company representing advertisers, booking campaigns
Advertiser - A company that wants to show advertisements
o External tech companies bidding on behalf of the above

CONFIDENTIAL

GOOG-AT-MDL-0040763590

Example: What is a Buyer? - Product Perspective

e Tendto think interms of User Journeys
e Examples:
Someone spending dollars
Someone negotiating a deal
o Anentity a publisher wants to block
A "“Bidder” (we could unpack this as well)

CONFIDENTIAL

GOOG-AT-MDL-004076591

Example: What is a Buyer? - Engineering Perspective

e Tendtothink interms of pre-defined ID spaces
e Examples:
Buyer Networks - An ill-defined “seat” concept in practice
Customers - literally a row in the customer table
o DSPs - the technical endpoints, not the companies
DV3 Partner - somecne with a DV3 account

CONFIDENTIAL GOOG-AT-MDL-0040763592

Expressing model in software

Entities: identity and lifecycle
Publisher, buyer...
Value objects: no conceptual identity
Slot geometry
Services: operations over entities and value objects...
Do not fit cleanly under either an entity or a value object
Modules: logical grouping of highly-cohesive domain elements

CONFIDENTIAL GOOG-AT-MDL-0040763593

Domain vs. infrastructure-driven design styles

- Infrastructure-driven - focus on:
Binaries
RPCs
Data “piping”
Producers
- Domain-driven - focus on:
Modeling real-world concepts
Entities and relationships
Actions and services
Knowledge-rich model with continuous refinement

Encapsulation
- Which one do you use more frequently?
- Which one does your team use more frequently?

- Why?

CONFIDENTIAL

GOOG-AT-MDL-004076594

Example: get bids from RTB bidders

Each bidder may have multiple URLs to send bid requests to
Certain optimization function governs which URL to send a request to
E.g., based on lower latency

Each URL has a QPS limit and a protocol associated with it
Once sent, a bid request may succeed or fail
A bid response may include zero or more bids

CONFIDENTIAL GOOG-AT-MDL-0040763595

SEMVICE

Value object

Example: getting bid responses from bidders

CONFIDENTIAL GOOG-AT-MDL-004076596

Example: getting bid responses from bidders

- Bidding endpoint: allows to send bid requests and receive bid responses
- "Transport layer”
- Associated with a specific bid request protocol, network URL

- Routing strategy: selects the best matching bidding endpoint to send
a given candidate bid request for a given bidder to

- Based on bidder configurations, other optimization constraints (latency, availability...)

- May not always succeed (no valid endpoints with available capacity)

- Bid request factory: creates outgoing bid requests in a specific wire protocol
- Based on request-level and bidder-level inputs

CONFIDENTIAL

GOOG-AT-MDL-004076397

Example: getting bid responses from bidders

CONFIDENTIAL

GOOG-AT-MDL-004076598

Why domain-driven design?

- Forcing function for choosing clear concepts & behaviors of the system being built
- Reduce ambiguity
- Seek precision in requirements & their expressionin the modeling language, software
- Look for patterns, simplifications
- Increase velocity, lower costs of development and maintenance
- Thanks to using ubiguitous language in communication
Across the engineering team, domain experts, business, legal, gTech...
- Thanks to clear manifestation of the model in code
- Thanks to rich knowledge of the model on the team
- Learning: team constantly

refines their understanding of the real-world problem at hand
- Points to better opportunities for solving our users’ problems

CONFIDENTIAL GOOG-AT-MDL-0040763599

Next steps

Consider how DDD could be applied to your project & what benefits it could bring
Consider what are the impediments of applying DDD on your team

Pick a read on domain driven design (an article, a book, ...)

Try DDD on one of the future or current projects

CONFIDENTIAL GOOG-AT-MDL-004076600

