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1 Introduction

A long-standing result in the theoretical literature is that forward markets can increase

output and lower prices in imperfectly competitive industries (Allaz and Vila (1993)). Un-

derlying the result is that forward sales discipline the exercise of market power in the spot

market by making profit less sensitive to the changes in output. Little attention has been

played, however, to the role of competition in determining the magnitude of these effect—

the existing literature is developed almost exclusively using models of symmetric duopoly.

In the present study, we examine the effects of forward markets under generalized market

structures, and obtain results that are of practical relevance to antitrust authorities.

Our model features an oligopolistic industry in which firms sell a homogeneous product

and compete through their choices of quantities. Competition happens first in one or more

contract markets, and later in a spot market. Following Perry and Porter (1985), firms

have heterogeneous marginal cost schedules that reflect their respective capacities. The

model can incorporate any arbitrary number of firms and any combination of capacities, and

thereby facilitates an analysis of market structure. Thus, we bring together two established

theoretical literatures: one on strategic forward contracts (e.g., Allaz and Vila (1993)), and

the other on the effects of horizontal mergers with homogeneous products (e.g., Perry and

Porter (1985); Farrell and Shapiro (1990)).

We establish that the presence of forward markets weakly increases aggregate output

in equilibrium, relative to a Cournot benchmark, regardless of market structure. Forward

markets allow firms to make strategic commitments, and the ensuing competition for Stack-

leberg leadership increases output relative to a Cournot baseline. This effect is largest for

intermediate levels of market concentration, and converges to zero as market structure ap-

proaches the limit cases of monopoly and perfect competition. The non-monotonicity arises

because increasing the number of firms intensifies the competition for Stackleberg leader-

ship and thereby pushes the industry toward a perfectly competitive equilibrium faster than

2



would be the case under Cournot competition. However, there are diminishing returns: firms

do not sell output for less than their marginal cost, regardless of their forward position. As

the number of firms grows large, competitive outcomes are obtained with or without forward

markets. A simple Monte Carlo experiment suggests that, with a single period of forward

contracting, the increase in consumer surplus is maximized at a Hirshmann-Herfindahl Index

(HHI) of around 0.30, corresponding roughly to a three firm oligopoly. The increase in total

surplus is maximized at an HHI around 0.40.

These results suggest that the presence of forward markets has nuanced implications

for merger analysis. Indeed, we establish that forward contracting exacerbates the loss of

consumer surplus caused by mergers if the market is sufficiently concentrated, but mitigates

loss otherwise. This can be understood as the combination of two forces. First, forward

contracts discipline the exercise of market power, which would be sufficient to mitigate

output loss if firms’ forward contracting practices were to remain unchanged post-merger.

However, mergers also lessen the competition for Stackleberg leadership, thereby softening

the constraint on the exercise of market power. The latter effect dominates if the market is

sufficiently concentrated. Returning to Monte Carlo experimentation, forward markets tend

to amplify consumer surplus loss if the post-merger HHI exceeds 0.40, roughly between a

symmetric tripoply and duopoly levels.

While it is difficult to obtain general analytical results on the profitability of mergers

in our setting, the Monte Carlo experiments we conduct have the striking feature that every

merger considered is privately profitable in the presence of forward markets. To motivate

this numerical result, we point out that mergers are not profitable in Cournot models with

constant marginal costs except in the case of merger to monopoly (Salant, Switzer and

Reynolds (1983)). With increasing marginal cost schedules, some mergers are profitable,

but many still are not (Perry and Porter (1985)). Thus our finding is somewhat novel. We

demonstrate analytically that it stems from the merging firm’s ability to influence the output
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of its rivals through forward commitments: consolidation damps the incentives for all firms

to hedge, and the output expansion by non-merging is mitigated sufficiently to bring about

profitability.

Our final set of results pertain to collusion. Liski and Montero (2006) show that

the presence of a forward market can reduce the critical discount rate necessary to sustain

collusion in the case of symmetric duopoly. We advance the literature by considering how

this relationship depends on industry structure, namely changes in the number of firms. We

find that, (i) the presence of a forward market decreases the critical discount rate relative

to Cournot; and (ii) this effect is more pronounced for small N . This suggests that it is

more likely that, in the presence of a forward market, firms will switch from competition to

collusion in response to an increase in concentration.

One limitation of our model is that it does not incorporate risk aversion. However,

Allaz (1992) shows that risk-hedging and strategic motives can coexist in equilibrium, with

each contributing to an expansion of output relative to the Cournot benchmark. The mech-

anisms that we identify extend to that setting cleanly. Further, we anticipate that many of

our results also would extend to models in which forward contracts exist only to hedge risk

(e.g., Eldor and Zilcha (1990)); the basis being that if the exercise of market power is rela-

tively more profitable, but for some limiting constraint, then firms have relatively stronger

incentives to relax the constraint. Thus, for instance, one might expect firms in less com-

petitive industries to bear somewhat more risk. This principle applies well beyond models

of forward contracting; the dynamic price signaling game of Sweeting and Tao (2016) is one

recent example that shares a core intuition with our own research.

This study blends the literatures on horizontal mergers and strategic forward contract-

ing. In the former literature, Perry and Porter (1985) introduce the concept of capital stocks

to model mergers among Cournot competitors as making the combined firm larger instead

of merely reducing the number of firms. McAfee and Williams (1992) solve for the equilib-

4



rium strategies under any arbitrary allocation of capital stocks. Farrell and Shapiro (1990)

allow for fully general cost functions which incorporate the possibility of merger-specific cost

efficiencies, and also develop the usefulness of examining “first-order” impact of mergers.

Jaffe and Wyle (2013) apply the first-order approach to study merger effects under a general

model of competition that nests conjectural variations, Cournot, and Bertrand as special

cases. The solution techniques that we employ extend the methodologies developed in these

articles.

The seminal article on strategic forward contracting is Allaz and Vila (1993). The

main result developed is that as the number of contracting stages increases in a model of

duopoly, total output approaches the perfectly competitive level. The subsequent literature

has gone in a number of directions. Hughes and Kao (1997) and Ferreira (2006) consider

the importance of the assumption that contracts are observable to the market. Green (1999)

extends the model to markets in which firms submit supply schedules. Mahenc and Salanie

(2004) analyze the impact of forward contracting when firms compete via differentiated

products Bertrand in the spot market. Ferreira (2003) explores equilibria of the game with

infinitely many contracting rounds. Liski and Montero (2006) consider the role of forward

contracting in sustaining collusive outcomes. All of these studies suggest that the extent to

which our results are applicable in real-world settings will depend on a number of features

of the industry in question. Empirical evidence on the importance of forward contracting is

presented in Wolak (2000), Bushnell (2007), Bushnell, Mansur and Saravia (2008), Hortacsu

and Puller (2008) and Brown and Eckert (2016).

Among the aforementioned studies, the closest to our research are Bushnell (2007) and

Brown and Eckert (2016). Bushnell (2007) examines the welfare impact of a forward market

for a symmetric N -firm oligopoly with a single round of forward contracting. The model is

calibrated to a number of deregulated electricity markets in order to ascertain the impact of

forward markets on prices and output. Mergers are not examined. Brown and Eckert allow

5



firms to have heterogeneous capital stocks as we do, but the focus is primarily empirical and

as a result, they do not analytically solve for the equilibrium with an arbitrary number of

contracting rounds and heterogeneous firms as we do.

The paper proceeds as follows. Section 2 describes the model of multistage quantity

competition and solves for equilibrium strategies using backward induction. Section 3 ana-

lyzes the welfare impact of forward contracting, showing that the welfare impact of a forward

market is non-monotonic in concentration. Section 4 formally models the welfare impacts of

mergers highlighting how the results differ from the baseline model of Cournot competition.

Section 5 provides an extension to collusion and Section 6 concludes with a discussion of the

applicability of our results.

2 Model

2.1 Overview

We consider a modified Cournot model that features T contracting stages. The model is

a variant of Allaz and Vila (1993) but we allow for an arbitrary number of producers with

heterogeneous production technologies as in McAfee and Williams (1992). In each of T

periods prior to production, firms can contract at a set price to buy or sell output to be

delivered at time t = 0. Denote each of these contracting stages as T, . . . , t, . . . , 1 such that

stage t occurs t periods before production. Following the conclusion of each contracting stage,

contracted quantities are observed by all market participants and are taken into account in

the subgame that follows. At t = 0, production takes place, contracts are settled, and

producers compete via Cournot to sell any residual output in the spot market. The solution

concept is Subgame Perfect Nash Equilibrium (“SPE”).

Formally, let f ti denote the quantity contracted by producer i ∈ {1, . . . , N} in stage t,

and let qti =
∑T

τ=t+1 f
τ
i denote the producer’s forward position at the beginning of period
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t. Forward contracts in stage t are agreed upon taking as given the forward price, P t, and

the vector of forward positions, qt = {qt1, ..., qtN}, and with knowledge of the corresponding

subgame equilibrium that follows. At t = 0, each producer sells qsi in the spot market taking

into account the vector of forward positions q0 = {q01, ..., q0N} and given other producers’

output. This determines the producer’s output, qi, as the sum of its contracted and spot

sales. Producers are “short” in the spot market if q0i > 0. Total output is the sum of all

firms’ output and is denoted Q =
∑

i qi. Buyers are passive entities and are represented by

the linear inverse demand schedule P (Q) = a− bQ, for a, b > 0.

Each producer i is characterized by its capital stock, ki, a proxy for its productive

capacity. Total costs are Ci (qi) = cqi + eq2i /2ki, so that marginal costs, C ′i (qi) = c+ eqi/ki,

are increasing in output but decreasing in the capital stock. As a result, firms with greater

capital stocks will have higher market shares owing to this cost advantage. We assume

a > c ≥ 0 to ensure that gains to trade exist. The parameter e is binary (e ∈ {0, 1}) and

allows the model to nest constant marginal costs as a special case.

2.2 Spot market subgame

Solutions are obtained via backward induction: first considering the output decisions of

producers in the spot market, given any vector of contracted quantities, and then considering

the contract market. The spot price is determined by total output, Q (q0), which is itself a

function of the vector of forward positions, q0. Producer i chooses its output, qi (the sum

of forward and spot market quantities), taking as given q0 as well as the vector of other

producers’ output, q−i, to maximize the profit function,

πsi
(
qi; q

0,q−i
)

= P
(
Q
(
q0,q−i

)) (
qi
(
q0,q−i

)
− q0i

)
− Ci

(
qi
(
q0,q−i

))
.

7



Suppressing dependence on q0 and q−i, the first-order condition implies that

P (Q) +
(
qi − q0i

)
P ′ (Q) = C ′i (qi) . (1)

If the producer holds a short position (i.e. q0i > 0), then the inclusion of q0i in equation (1)

says that, relative to Cournot, revenue is less sensitive to output because selling an additional

unit has no effect on the price received from forward sales. This amounts to an outward

shift in the firm’s marginal revenue function, holding fixed the output of other producers.1

If competing producers increase their output relative to Cournot due to their own forward

positions, this will cause i’s marginal revenue function to shift back somewhat.

We derive closed-form expressions for equilibrium price and quantities by making use

of the following terms:

βi =
bki

bki + e
, B =

∑
i

βi, B−i =
∑
j 6=i

βj, F
0 =

∑
i

βiq
0
i , F

0
−i =

∑
j 6=i

βjq
0
j ,

Proposition 1 In the spot market subgame with vector of forward positions, q0, there exists

a unique Nash equilibrium in which price, total output and individual firms’ output are given

by:

P
(
q0
)

= c+
a− c
1 +B

− bF 0

1 +B

Q
(
q0
)

=

(
a− c
b

)
B

1 +B
+

F 0

1 +B

qi
(
q0
)

=

(
a− c
b

)
βi

1 +B
+

βi
1 +B

[
(1 +B−i) q

0
i − F 0

−i
]

1Anderson and Sundaresan (1984) use this very argument to show that given a short forward position, a
monopolist will necessarily increase output relative to Cournot. They rely on risk aversion to explain why a
monopolist would hold a short position in the first place.
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All proofs are in the Appendix. The above values have been expressed so as to illustrate

the differences between the multi-stage model of competition considered here and a baseline

model of Cournot competition without forward contracts in which q0i = F 0
−i = F 0 = 0.

In Cournot, total output is increasing while price is decreasing in B. A larger value of B

corresponds to conditions typically associated with a more competitive industry: a larger

number of firms, holding fixed capital stock per firm; greater capacity (i.e. capital stock)

per firm, holding fixed the number of firms; and a more symmetric distribution of capacity

among firms.

If F 0, a weighted average of producers’ forward positions, is positive (i.e. producers

are short on net) then price is lower and total quantity is higher than under Cournot. This

foreshadows the results obtained below. A given producer’s quantity may be higher or

lower than the Cournot baseline, depending on how its forward position compares to that

of other producers. One could imagine a producer would want to contract a large share of

its productive capacity to become a Stackelberg leader. However, since other producers are

employing the same strategy, each must adjust its output to the contracted quantities of its

rivals. We will be able to say more about which of these forces dominates after deriving the

equilibrium in the contract market.

2.3 Contract market

The contract market consists of speculators and producers. Speculators serve to take the

opposite side of any long or short position of the producers subject to the constraint that

the trade cannot be unprofitable ex ante. Producers take the contract price as given and

simultaneously choose quantities. Suppose further that there are at least two speculators.

With perfect information about the future, the resulting spot price is known as are all

prices and quantities in subsequent contracting rounds, conditional on equilibrium (pure)

strategies. Perfect foresight along with competition among speculators rules out any price
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other than the resulting spot price. Therefore, we require that the period-τ contract price,

P τ , satisfy, P τ = · · · = P 1 = P (Q (qτ )), where Q (qτ ) is total output conditional on period-

τ forward positions, qτ , given equilibrium behavior in what follows. We refer to this as the

“no arbitrage” condition.2 Finally, we assume no discounting of profits.3

Consider then producer i’s decision of how much to supply (or demand) in the contract

market. Taking as given qτ and q−i, producer i chooses f τi to maximize its profit function,4

πi (f
τ
i ; qτ ,q−i) = P τf τi +

τ−1∑
t=1

P tf ti + P (Q)
(
qi − q0i

)
− Ci (qi)

= P (Q) (qi − qτi )− Ci (qi)

The first line on the right-hand side says that the producer takes into account that trans-

actions in the current period affect prices and quantities in subsequent contracting periods

as well as in the spot market. The second line on the right-hand side follows from the no-

arbitrage condition. This shows that when the producer believes that all subsequent forward

prices will adjust to the rationally anticipated spot price, it need only be concerned with

how its decision today affects the spot price.

The first-order condition implies that,

P (Q) + (qi − qτi ) (1 +Rτ
i )P

′ (Q) = C ′i (qi) , (2)

where Rτ
i ≡

∑
j 6=i

∂qj
∂fτi

/ ∂qi
∂fτi

. The interpretation of Rτ
i is as follows: if producer i takes an

action in stage τ that increases its output by one unit, Rτ
i is the quantity response from all

other producers. This term may be thought of as a conjectural variation, albeit one that is

derived endogenously from equilibrium play. In a Cournot game with “Nash conjectures”

2The issue of commitment arises in that given a fixed number of contracting periods, a firm would always
wish to to increase its contracting opportunities so as to disadvantage its rivals. Our results require that
contracting frictions limit firms to a finite number of contracting periods.

3Including a discount rate changes nothing as shown by Liski and Montero (2006).
4We suppress dependence on qτ and q−i for readability.
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(McAfee and Williams (1992)), this term is zero. But when competition spills across multiple

periods as in the current setting, each producer recognizes that a marginal increase in its own

short position, will reduce the amount competing firms produce. This creates an incentive

for each firm to expand output beyond its Cournot level.

We derive Rτ
i recursively, relying on equilibrium behavior.

Lemma 1 The conjectural variation in stage 1 with respect to producer i’s output as derived

from Nash equilibrium behavior in the subgame beginning in stage 0 is,

R1
i = − B−i

1 +B−i
.

For any τ ≥ 1, define µτi = βi
1+βiRτi

and M τ
−i =

∑
j 6=i µ

τ
j . The conjectural variation in

stage τ + 1 with respect to producer i’s output as derived from SPE behavior in the subgame

beginning in stage τ is,

Rτ+1
i = −

M τ
−i

1 +M τ
−i
.

We can use Lemma 1 to show how the firm’s problem is impacted by the presence of a

forward market. It is evident that the marginal revenue curve facing firm i in the contract

market as expressed in equation (2) is flatter in own output than it would be under Cournot.

Since 1 + Rτ
i < 1, a marginal increase in firm i’s contracted quantity does not reduce the

price by as much as it would under Cournot because other firms respond by reducing their

own output. Holding all other firms’ output fixed at their Cournot levels and assuming no

forward position in period τ (i.e., qτi = 0), the inclusion of 1 +Rτ
i in equation (2) pivots firm

i’s marginal revenue curve up from the vertical axis, which suggests firm i will increase output

relative to Cournot. As we saw in the spot market subgame, incorporating a short position

shifts the firm’s marginal revenue curve outward, thereby reinforcing this effect. However, if

the same incentives facing firm i lead other firms to increase their output relative to Cournot,
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firm i’s marginal revenue curve shifts down because quantities are strategic substitutes. This

shift curbs firm i’s incentive to increase output relative to Cournot and may even decrease

it if other firms increase their output by a large enough amount.

We can now derive the equilibrium of the full game. Let M τ =
∑

i µ
τ
i for any τ ≥ 1

and for completeness of notation, let Rt
i = 0 for all i when t = 0.

Proposition 2 There exists a unique SPE of the game beginning in period T such that in

each period, a producer anticipates producing qi and sells a strictly positive fraction of its

uncommitted anticipated output which rationalizes qi as an equilibrium. The equilibrium is

characterized by a vector of outputs, {qi}i, a sequence of forward sales, {f ti }i,t, total output,

Q, and price, P , satisfying:

qi =

(
a− c
b

)
µTi

1 +MT

f τi =
Rτ−1
i −Rτ

i

1 +Rτ−1
i

(
qi −

T∑
t=τ+1

f ti

)

Q =

(
a− c
b

)
MT

1 +MT

P = c+
a− c

1 +MT

Absent a contract market (i.e., Rt
i = 0 ∀ i, t), µTi and MT reduce to βi and B, re-

spectively, so that the price and quantities in Proposition 2 collapse to their values in the

Cournot game of McAfee and Williams (1992). We can assess the impact of a forward mar-

ket more broadly by analyzing changes in equilibrium outcomes as T increases from zero as

in Cournot to positive values. We have that,

Corollary 1 For any T ∈ {0, 1, . . .}, price is (weakly) lower and total output is (weakly)
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higher in the SPE of the game with T + 1 contracting rounds than with T . Each inequality

is strict outside of the monopoly case. An individual producer’s output can nevertheless be

lower in the game with T +1 contracting rounds relative to T if its capital stock is sufficiently

small relative to that of its competitors.

Allaz and Vila (1993) provide a special case of this result for a symmetric two-firm

oligopoly. When firms are symmetric, our model shows that all firms increase their output

as T increases, as they do in Allaz and Vila (1993). Corollary 1 shows that this may no

longer be the case when firms are asymmetric. This result suggests that the introduction of

a forward market may increase concentration as measured by output, even as it improves

welfare.

The impact of the forward market on output can be substantial. Consider the special

case of constant marginal cost (e = 0) and a single contracting stage (T = 1). In this case,

βi = 1 so that hi = N−1
N

, µ1
i = N , and M1 = N2. The presence of a forward market increases

output by 140 percent when N = 2 and by nearly 600 percent when N = 6. These increases

would be somewhat smaller if marginal costs were instead increasing (e = 1) and larger with

multiple rounds of contracting (T > 1).

3 Market Structure and Welfare

We now examine the role of market structure in evaluating the impact of a forward market

on welfare. Whereas Allaz and Vila (1993) showed that welfare can span duopoly-Cournot

to perfect competition levels as the number of contracting rounds increases, our focus is on

how the welfare impact of a forward market is influenced by market structure. As such, we

treat T as fixed, determined by the particulars of the industry.5

5Bushnell (2007) discusses the institutional details of forward sales within wholesale electricity.
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3.1 Market structure and hedge rates

The welfare impact of a forward market is related to the fraction of each firm’s output that

is contracted in the forward market, i.e. its “hedge rate.” The following result aids the

understanding of this relationship.

Lemma 2 Given equilibrium strategies within the SPE of the (T + 1)-stage game, the hedge

rate can be expressed as hi ≡ q0i
qi

= |RT
i | =

MT
−i

1+MT
−i

.

The result is fairly general in that the first equality, hi = |RT
i |, does not rely on the

shape of the demand or cost functions. It follows from the fact that a firm, when deciding

how much to supply on the contract market, takes into account that a marginal increase

in supply will be met by a decrease in its competitors’ sales in subsequent periods. Thus,

while a marginal increase in contracted supply on its own causes the price to decline, the

corresponding decrease in competitors’ outputs partially offsets this. The optimum equates

marginal revenue across each of T + 1 stages much in the way that a third-degree price

discriminating monopolist equates marginal revenue across customer segments.

A firm’s hedge rate depends at a first order on the amount of capital stock controlled

by its competitors as well as the distribution of capital stock among them.6 Competitors

with larger capital stocks produce more irrespective of hedging, so their response to firm

i’s contracted quantity will be larger. At the same time, because larger firms make less

efficient use of their capital stocks, firm i’s hedge rate is larger when the capital stocks

of its competitors are more symmetrically distributed.7 The upshot is that the structural

conditions which lead a firm to sell a larger fraction of its output in the contract market are

6In the game with T = 1 contracting stages, a firm’s hedge rate, hi = B−i/(1+B−i), depends only on the
capital stocks of its competitors. But when T > 1, the hedge rate depends on µT−i, each of which depends
on firm i’s capital stock through its influence on every other firm’s hedge rate. The effect of βi on h−i is of
a second-order magnitude, however.

7Each βi is concave in capital due to increasing marginal costs. Thus, firms with larger capital stocks
produce less per unit of capital than smaller firms. Note that if marginal costs are constant (d = 0) then
βi = 1 ∀i.
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the same conditions that lead to greater output in the baseline Cournot model.

As a further illustration, consider the perfectly symmetric case (i.e., βi = β for all i).

The (common) hedge rate when T = 1 is,

h(1) =
(N − 1) β

1 + (N − 1) β
. (3)

That h(1) is larger for larger values of N suggests that from a welfare perspective, a forward

market is not a perfect substitute for a competitive industry structure because forward

contracting is more prevalent when the industry is more competitive. This interpretation

continues to hold for larger values of T . To see this, we have from Lemmas 1 and 2 that the

hedge rate when T = 2 is,

h(2) = H
(
h(1)
)
≡ (N − 1) β

1 + (N − 1− h(1)) β
. (4)

Since H is monotonically increasing in h(1) and larger for larger values of N , it follows that

iteration T − 1, h(T ) = HT−1 (h(1)) (where the superscript T − 1 reflects the number of

iterations), is also larger for larger values of N . Note that in the case of monopoly (N = 1),

the hedge rate is zero for any T as forward contracting has no strategic impact.

3.2 Hedge rates and welfare

In Proposition 1, we saw that total output is increasing in F 0, a weighted-average of forward

positions. Lemma 2 showed that a firm’s contracted output is increasing in its hedge rate,

which itself is a function of market structure. In particular, when the market structure

is more competitive—e.g., there are more firms or capital is distributed more symmetrically

among a given number of firms—hedge rates are higher. This suggests that a forward market

creates an additional channel through which market structure affects welfare.

To formalize this point, we first consider the industry-average Lerner Index, which
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summarizes the degree to which market output diverges from perfect competition and hence

is useful as a proxy for consumer and total surplus (Shapiro (1989)). Let si = qi/Q denote

firm i’s market share and let ε = − (∂Q/∂P ) (P/Q) denote the absolute price elasticity of

demand.

Lemma 3 Given a vector of hedge rates h, the Lerner Index derived from firms optimizing

subject to h equals

LI (h) ≡
∑
i

(
P − C ′i
P

)
si =

∑
i

s2i
ε

(1− hi)

Lemma 3 shows that each firm’s price-cost margin percentage is a product of two

terms, the typical Cournot term, s2i /ε, and a term reflecting the importance of forward

contracting, (1− hi). The LI can be evaluated at the SPE hedge rates, but it also holds for

an arbitrary vector of hedge rates, keeping in mind that si and ε are themselves functions of

the hedge rates. As hedge rates increase uniformly from zero to unity, price-cost margins and

hence consumer and total surplus, span the Cournot outcome at one extreme and perfect

competition at the other. Again holding T fixed, the structural conditions that give rise

to larger hedge rates are the same conditions that give rise to competitive outcomes in the

absence of forward contracting.8

3.3 Concentration and welfare

The results already established are sufficient to determine that forward markets have the

greatest impact on outcomes in markets characterized by some intermediate level of compe-

tition/concentration. The (T + 1)-stage model is equivalent to the baseline model of Cournot

8When T becomes large, hedge rates approach unity and outcomes become competitive even under
industry structures that look very non-competitive. Allaz and Vila (1993) showed that, in a symmetric
duopoly, as T →∞, output approaches the perfectly competitive level.
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competition in the monopoly case (Corollary 1), and both models converge to perfect com-

petition as market shares approach zero (Lemma 3). Thus, if forward markets lower price

and increase output (Corollary 1) then the magnitude of these effects must be maximized in

markets with firms that have market shares bounded strictly by zero and unity.

We present the result using both consumer surplus (CS) and total surplus (TS) as

measures of welfare. These can be expressed as functions of total output and the average

price-cost margin:9

CS =
b

2
Q2

TS =
Q

2

[
a− c+

∑
i

si

(
P − C ′i

)]
(5)

Let ρCS denote the ratio of consumer surplus in the SPE of (T + 1)-stage model to consumer

surplus in Cournot, holding constant all model parameters. Let ρTS denote the analogous

ratio with respect to total surplus.

Next, we define what it means for concentration to decrease from monopoly at one

extreme to the limiting case of perfect competition. Assume that there is an infinite number

of potential producers, but that at any time, there are only a finite number whose capital

stocks are strictly positive. We will then consider transfers of capital among a subset of po-

tential producers, Ñ, that reduces the absolute difference in capital between every producer

in Ñ. Suppose that a transfer changes the capital allocation from k to k′ where ki and k′i are

elements of k and and k′, respectively. Following Waehrer and Perry (2003), an equalizing

transfer is such that: (i) |ki − kj| >
∣∣k′i − k′j∣∣ for every i, j ∈ Ñ; (ii)

∑
i∈Ñ ki =

∑
i∈Ñ k

′
i; and

(iii) kl = k′l for all l /∈ Ñ. With respect to mergers, the pre-merger allocation of capital can

be recovered from the post-merger allocation via an equalizing transfer.

We model perfect competition as the limiting case, of all allocations in which all firms

9Derivations are in the Appendix.
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with positive capital stocks are symmetric, as the number of such firms goes to infinity. A

symmetric equalizing transfer is an equalizing transfer moving from k to k′ in which: i)

k′i = k′j for every i, j ∈ Ñ ; and ii) k′i < ki for every i, j ∈ Ñ . The industry approaches perfect

competition from any arbitrary initial allocation of capital through a sequence of symmetric

equalizing transfers.

Proposition 3 If k is the monopoly allocation, then any equalizing transfer from k increases

ρCS and ρTS. For any allocation k other than the monopoly allocation, there exists an

allocation k̂, such that any symmetric equalizing transfer to k̂ causes ρCS and ρTS to decline.

Proposition 3 is one of our core results. The idea is that when markets are sufficiently

concentrated, a small decrease in concentration increases welfare more in the presence of a

forward market. A large enough decrease in concentration from an intermediate allocation

can increase welfare relatively more in the absence of a forward market. In the remainder of

this section, we use numerical techniques to illustrate how forward markets have the greatest

impact on welfare with intermediate levels of competition/concentration.

We first compare the welfare statistics obtained with T = 1 rounds of forward con-

tracting to those obtained in Cournot equilibrium (T = 0). To do so, we create data on

9,500 “industries,” evenly split between N = 1, 2, . . . , 20. For each industry, we calibrate

the structural parameters of the model (a, b, c, k) such that Cournot equilibrium exactly

matches randomly-allocated market shares, an average margin, and normalizations on price

and total output.10 We then obtain the welfare statistics that arise in Cournot equilibrium

and with a single round of forward contracting.

Figure 1 summarizes the results. In each panel, the vertical axis provides the ratio of

surplus with forward contracting to surplus with Cournot. The horizontal axes shows the

Herfindahl-Hirschman index (“HHI”). The HHI is the sum of squared market shares, which

10We normalize P = Q = 100 and use an average margin of 0.40.
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Figure 1: Welfare Statistics with Heterogeneous Capital Stocks

attains a maximum of unity in the monopoly extreme and asymptotically approaches zero

as the market approaches perfect competition. The HHI is an appealing statistic due to its

well-known theoretical connection to welfare in the baseline Cournot model; it also features

prominently in the Merger Guidelines of the U.S. Department of Justice and Federal Trade

Commission.11 In the graphs, each dot represents a single industry, and the lines provide

nonparametric fits of the data.

As shown, consumer surplus and total surplus are greater with forward contracting

than with Cournot (because all dots exceed unity). Further, consistent with Corollary 1,

the impact of a forward market is greatest at intermediate levels of competition.12 The gain

in consumer surplus is maximized at an HHI around 0.30, which corresponds roughly to a

11Notice that when all hi = 0, LI = HHI/ε.
12As there is not a one-to-one correspondence between HHI and consumer or total surplus, we view these

results as illustrative. The advantage to using HHI to measure concentration is that it offers a complete
ordering of any two capital allocations and hence allows us to plot the results. In the following section, we
analyze a more theoretically-robust measure of concentration that does not offer a complete concentration-
ordering of allocations.
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symmetric three firm oligopoly. The gain in total surplus is maximized at an HHI around

0.40, between the symmetric triopoly and duopoly levels. The figure also shows that forward

markets diminish producer surplus, particularly in non-concentrated markets.

It is also possible to compare the welfare statistics that arise with forward contracts

to those obtained with perfect competition. This is especially tractable in the special case

of symmetric firms and constant marginal costs (e = 0). The expressions in (5) can be

presented as functions of the common hedge rate:

CS(h(T )) =
(a− c)2

2

(
N

N + 1− h(T )

)2

TS(h(T )) =
(a− c)2

2

(
N

N + 1− h(T )
− 1

2

(
N

N + 1− h(T )

)2
)

The analogous expressions with perfect competition are CS(1) = TS(1) = 1
2

(a− c)2. Thus,

the levels of consumer surplus and of total surplus with forward contracts, relative to perfect

competition, are free of the demand and cost parameters and depend only on the number of

firms and the hedge rate. This holds for any given hedge rate, including the SPE rates h(T ).

Figure 2 plots the ratios CS(h(T ))/CS(1) and W (h(T ))/W (1) for T = 0, . . . , 3. Again,

T = 0 corresponds to Cournot competition and h(0) = 0. The horizontal axis in each panel

is the number of firms (N = 1, ..., 10) which, under symmetry, is a sufficient statistic for con-

centration. As shown, consumer surplus and total surplus increase with N under Cournot

equilibrium; in the limit as N → ∞ these welfare statistics approach the perfectly com-

petitive level. Incorporating each round of contracting adds curvature to the relationship

between surplus and the number of firms, such that surplus approaches the perfectly com-

petitive level faster as N grows large. The “gap” between surplus with Cournot and surplus

with forward contracts is largest for intermediate N , again consistent with Proposition 3.

Lastly, the figure is highly suggestive that forward markets amplify the impacts of market

structure changes (e.g., mergers) on welfare in concentrated markets, but diminish impacts
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Figure 2: Welfare Statistics with Constant Marginal Costs

otherwise. We provide a more sophisticated analytical treatment of capital transfers in the

next section.

4 Mergers

In this section, we analyze the welfare impacts of consolidation, which we treat as the transfer

of capital stock from small to large firms. Mergers are inherently consolidating regardless of

whether the larger or smaller firm is the acquirer because the merged firm’s capital stock will

be larger than either of the merging firms’. Our interest extends beyond mergers to partial

acquisitions as many real-world applications involve the sale of individual plants. Even when

evaluating full mergers, antitrust authorities must often consider whether and to what extent

a partial divestiture might offset the anticompetitive harm.
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4.1 Effects on consumer surplus

We begin by analyzing the effect of consolidation on consumer surplus. To the extent that

antitrust agencies review mergers under a consumer surplus standard, our results should

be directly applicable to antitrust policy. Our results derive from an analytic “first-order”

approach which we supplement in places with simulations. The analytic approach examines

effects of small consolidating transfers, restricting attention to pairwise transfers of capital

from any firm 2, say, to any firm 1 whose capital stock is larger.13 Keeping with the naming

convention used in the literature, we refer to firms 1 and 2 as the “inside” firms and all

other firms as the “outside” firms. Holding fixed the total capital stock controlled by the

inside firms, a consolidation of capital among firms 1 and 2 is a transfer of some amount,

dk, such after the transfer, firm 1 has capital stock k1 + dk while firm 2 has capital stock

k2 − dk, leaving the total unchanged. Our analytical approach illuminates the mechanisms

underlying our results while avoiding the integer problem inherent in the analysis of full

mergers.

Extrapolating to larger transfers such as full mergers involves integrating over these

first-order effects. When first-order effects are insufficient to evaluate larger transfers or oth-

erwise are aided by additional illustration, we provide simulations of full mergers. We restrict

attention to a single round of forward contracting (T = 1) to simplify the mathematics, and

remove the corresponding superscripts as appropriate. Because consumer surplus is increas-

ing in total output (from (5)), any transfer of capital that reduces the equilibrium output

reduces consumer surplus. Formally, the change in consumer surplus due to a consolidating

transfer of capital is,

dCS = b · dQ =
a− c

(1 +M)2

∑
i

dµi.

We can deconstruct the output effect into two components, a structural effect (SE),

13Jaffe and Wyle (2013) and Farrell and Shapiro (1990) employ this approach, though they do not analyze
how the merger changes firms’ conjectural variations as we do.
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which measures the change in output holding each firm’s hedge rate fixed, and a hedging

effect (HE), which measures the incremental change in output due to changes in how the new

structure changes firms’ conjectural variations. Keeping in mind that µi = βi
1+βiRi

(Lemma

1), we have that,

dµi =


(
µi
βi

)2
dβi − µ2

i · dRi if i = 1, 2

−µ2
i · dRi if i 6= 1, 2

Collecting the dβi terms and the dRi terms, respectively, the change in consumer surplus is,

dCS = SE +HE, where,

SE ≡ a− c
(1 +M)2

[(
µ1

β1

)2

dβ1 +

(
µ2

β2

)2

dβ2

]
< 0

HE ≡ − a− c
(1 +M)2

∑
i

µ2
i · dRi < 0

This deconstruction allows us to state the following proposition.

Proposition 4 All consolidating transfers reduce consumer surplus in the presence of a

forward market. The loss of consumer surplus due to a consolidating transfer is mitigated if

each firm’s hedge rate remains fixed at its pre-transfer value.

That consolidation leads to lower output should not be surprising as the result holds

within the baseline model of Cournot competition. What it interesting is that the reduction

is output is magnified when firms adjust their hedge rates in response to consolidation as

they do in the SPE of the two-stage game. This follows from the fact that SE,HE < 0.

The strategic effect is negative for the standard reasons: The capital transfer leads the

inside firms to reduce output, while outside firms react by expanding their output. The

total expansion across all outside firms only partially offsets the output reduction by the

inside firms, leading to a net decrease in industry output.14 The hedging effect is negative

14See Farrell and Shapiro (1990) for this result in Cournot oligopoly.
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due to how the capital transfer affects firms’ conjectures about competitor responses to a

change in their contracted quantity. Outside firms anticipate that the inside firms will be

less responsive to their contracted quantities on the basis that the inside firms produce less

overall. At the same time, the inside firms have less incentive to contract since there is less

productive capacity outside their control. This reduces the amount of forward contracting

in equilibrium and thereby weakens a constraint on the exercise of market power.

It is natural to ask whether the effect of consolidation is more pronounced within the

two-stage game relative to the baseline Cournot game.

Proposition 5 There exists a capital allocation k such that the reduction in consumer sur-

plus due to consolidation is greater within the SPE of the two-stage model than in Cournot.

There exists a capital allocation k′ that is less concentrated than k under the transfer prin-

ciple such that the reduction in consumer surplus due to consolidation is greater in Cournot

than in the SPE of the two-stage model.

Proposition 5 says that the welfare effects of consolidating transfers within the two-

stage model are greater than Cournot in industries that are sufficiently concentrated and

smaller than Cournot in industries that are unconcentrated. The reason why contracting

doesn’t always lead to a greater reduction in consumer surplus is that consumer surplus

depends on the pre-transaction hedge rate. Within the two-stage model, the effect of a

change in structure on each firm’s output is proportional to its pre-transaction output. As a

result, the structural effect is damped relative to Cournot, substantially so when the industry

is fairly unconcentrated. Recall from Section 3.1 that hedge rates decline in concentration.

It follows that as the capital stock becomes more concentrated, hedge rates decline and each

firm’s output in the two-stage game converges to its output in the Cournot game. Proposition

5 establishes what amounts to a threshold level of concentration where the hedging effect

exactly offsets the greater structural effect within Cournot.
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We revisit the Monte Carlo experiments to illustrate and extend the analyses beyond

first-order effects to full mergers.15 We create data on 9,000 industries evenly split between

N = 2, 3, . . . , 20, and calibrate the structural parameters of the model to match randomly-

allocated market shares, an average margin of 0.40, and normalizations on price and total

output. We then simulate economic outcomes using the obtained structural parameters

under the alternative assumption of Cournot competition (T = 0). Finally, to simulate

mergers, we combine the capital stocks of the first and second firm of each industry and

recompute equilibria both with the two-stage model and with Cournot.

Figure 3 summarizes the results. The vertical axis is the loss of consumer surplus in

the two-stage model divided by the loss under Cournot; this is greater than unity if forward

markets amplify loss. The horizontal axis is the post-merger HHI. Each dot represents a

single industry, and the line provides a nonparametric fit of the data. As shown, the relative

consumer surplus loss with forward contracts increases in the post-merger HHI, consistent

with Proposition 5. The threshold level above which forward contracts tend to amplify

consumer surplus loss is around a post-merger HHI of 0.40, roughly between symmetric

triopoly and duopoly levels.

4.2 Profitability

It is notoriously difficult to analyze the effect of mergers on firm profitability in models such

as ours, even the absence of forward markets (Perry and Porter (1985); Farrell and Shapiro

(1990)). Thus, we begin this section with a simple numerical analysis. Revisiting the Monte

Carlo exercise described above, we plot the change in the inside firms’ profits against the

post-merger HHI. Figure 4 shows the results for the two-stage model (Panel A) and Cournot

15Because Proposition 5 is a statement about first-order effects, it is theoretically ambiguous whether
it extends to large transactions including full mergers. For example, it may be the case that allocation
k is sufficiently non-concentrated that an incremental transfer would reduce consumer surplus more under
Cournot but a larger transfer would reduce consumer surplus more in the contracting model.
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Figure 3: Relative Consumer Surplus Loss with Forward Markets
Notes: The vertical axis provides the percentage change in consumer surplus with forward markets divided
by the percentage change without forward markets, given the same parameterization. Values above unity
represent the effects of mergers for which forward markets amplify consumer surplus loss. The horizontal
axis provides the post-merger HHI. The line provides a nonparametric fit of the data.

(Panel B). The striking result is that all mergers within the two-stage model are profitable

whereas in Cournot, many are not. We provide the following conjecture:

Conjecture 1 All mergers are profitable in the two-stage model.

This may help offer a more complete response to the “merger paradox.” Salant, Switzer

and Reynolds (1983) examined the incentive to merge within a symmetric model of Cournot

competition with constant marginal cost. They find that pairwise mergers are not profitable

unless they form a monopoly. It is difficult to explain the prevalence of mergers in light of

this result, hence the paradox.16 Perry and Porter (1985) argue that the failure to explain

the profitability of mergers is actually a misconception since the mergers are not well-defined

16Deneckere and Davidson (1985) alter the assumption that firms compete on quantity and show that
mergers are always profitable when firms offer differentiated products and compete on price. The conflicting
result arises because prices are strategic complements. In that case, an increase in the inside firms’ prices
is met by an increase in the prices of outside firms, hence mergers are profitable. But the assumption
that products are differentiated may not be applicable in many settings such as the sale of commodities or
wholesale electricity.
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Figure 4: The Effect of Mergers on Producer Surplus
Notes: The figure provides the percentage change in producer surplus captured by the two merging firms for
varying levels of post-merger HHI. Also provided are lines of best fit.

conceptually when firms can produce seemingly infinite quantities at a constant marginal

cost. They propose a model of capital stocks, the same model we have adopted, and find

that smaller mergers can indeed be profitable even when firms compete on quantities. Yet

many mergers within their framework are unprofitable. Figure 4 suggests that supplementing

Perry and Porter (1985) with a contract market is sufficient for all mergers to be profitable.

As Salant, Switzer and Reynolds (1983) demonstrate, the profitability of a merger

depends on the relative strength of two forces. First, the inside firms reduce output, thereby

raising the price. Outside firms respond by expanding output which counteracts somewhat

the effect of the inside firms’ contraction while further reducing the inside firms’ share of

industry output. When marginal costs are increasing as in Perry and Porter (1985), the

third-party response is damped enough that highly concentrating mergers short of mergers

to monopoly are profitable. As we will show, the introduction of a forward market increases

the price impact of the inside firms’ output reduction and further damps the third-party

output expansion relative to Cournot. To see how these two forces are impacted by the
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presence of a forward market, we analyze the first-order effect of a small merger. Our unit

of analysis is the reduction in the inside firms’ output, dQI .
17 The expansion of outsiders’

output is denoted, dQO.

Suppose that the acquisition of firm 2 leads to a decrease in the insiders’ output of dQI

and an increase in outsiders’ output of dQO. The change in insiders’ profits is,

dπI = {[P + (1 +RI)QIP
′ − C ′I ] + [dQO/dQI −RI ]QIP

′ + g/dQI}dQI (6)

where: C ′I is the slope of the inside firms’ marginal cost function evaluated at the pre-merger

output; RI is the inside firms’ period-1 conjecture; and g (> 0) is the cost savings incurred

by the inside firms upon rationalizing output across their combined capital assets. Since

dQI < 0, dπI > 0 if and only if the term in curly brackets is negative. We consider each of

its components in turn.

Because insiders reduce their output in equilibrium, it must be the case that at the pre-

merger equilibrium output, its marginal cost exceeds its marginal revenue. From the inside

firms’ period-1 first-order condition, we see that this is equivalent to [P + (1 +RI)QIP
′ − C ′I ] <

0. Since the pre-merger output puts the insiders on the downward sloping portion of πI with

respect to QI , a small decrease in QI increases profit by − [P + (1 +RI)QIP
′ − C ′I ]. Since

this term is decreasing in RI , and since hedge rates decline due to consolidation (an impli-

cation of Proposition 4), it must be that this incremental profit is larger than it would be if

hedge rates were kept constant or were constrained to be zero in the case of Cournot.

This incremental gain must be weighted against the effect on profit due to output

expansion by outsiders, − [dQO/dQI −RI ]QIP
′. The term inside the square brackets is the

net output response from outsiders due to the merger. To derive this, consider the solution

for firm j’s problem in the contract market (where we have assumed T = 1),

17In the earlier sub-section on consumer surplus, we saw that a small capital transfer leads the inside firms
to reduce output, so this change of variables is without loss.
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P (Q) + qj (1 +Rj)P
′ (Q) = C ′j (qj) (7)

Differentiating both sides of (7) with respect to Q−j =
∑

k 6=j qk, we obtain,

dqj
dQ−j

≡ rj = − µj
1 + µj

(8)

This is the firm’s reaction function ignoring the intertemporal effects of hedging. From

dqj = rjdQ−j, we have that, dqj (1 + rj) = rj (dqj + dQ−j) = rjdQ, or equivalently,

dqj = −
(

rj
1 + rj

)
dQ = −µjdQ (9)

Summing (9) over all j ∈ O, we have that, dQO = −M−IdQ = −M−I (dQO + dQI), or

equivalently,

dQ0

dQI

= − M−I
1 +M−I

(10)

Expression (10) is the gross change in outsiders’ output to a given change in insiders’

output, irrespective of intertemporal effects of hedging. However, since some of this response

was already internalized by the inside firms pre-merger via Stackleberg considerations, the

net impact of the merger is an expansion of − [dQO/dQI −RI ].

Notice that from (10), −dQO/dQI is equivalent to the inside firms’ hedge rate in the

game with T = 2 rounds of contracting, h
(2)
I . It follows that the net output expansion is

equal to h
(2)
I − h

(1)
I . In contrast, it is straightforward to show that the output expansion

under Cournot is −BI/ (1 +BI) which is equivalent to h
(1)
I . Since hedge rates converge to

unity as the number of contracting rounds increase, we have that h
(2)
I − h

(1)
I < h

(1)
I so that

it is indeed the case that the output expansion is damped by forward trading. Furthermore,

as the number of contracting rounds becomes large, the output expansion vanishes entirely.
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5 Collusion

We now investigate collusion in the presence of forward markets. We place the model into

a standard repeated-game setting with an infinite number of trading periods indexed t =

0, 1, 2, . . . . In each period, firms simultaneously sell output in a spot market and contract

for output up to T periods ahead. The discount factor is δ. Following Liski and Montero

(2006), which examines the case of duopoly, we impose constant marginal costs and hence

symmetry in order to improve the tractability of the incentive compatibility constraints. We

advance the literature primarily by considering an arbitrary number of firms, N .

We focus on a particular set of strategies under which firms collectively produce the

monopoly output, Qm = (a− c)/2, in each period. Let f t,t+τi denote the quantity contracted

by firm i during period t for delivery τ = 1, 2, . . . , T periods later. Along the collusive path,

firms trade in the forward market according to f t,t+1
i = xQm/N and f t,t+τi = 0 for all τ > 1

and trade in the spot market according to qsi = (1 − x)Qm/N . We consider x ∈ [−1, 1] so

that firms can be long (x < 0) or short (x > 0) in the spot market. The choice of x feeds into

the incentive compatibility constraints that we develop below. If any firm deviates from this

collusive path, then competition in all subsequent periods reverts to the strategies defined

by Proposition 2, albeit adjusted in some periods to account for the impact of the deviation

on future spot markets.

Because some fraction, x, of sales are already committed in any given period, the

present value of collusion takes the form

V c(δ, x) = (1− x)πm +
δ

1− δ
πm (11)

where πm = (a − c)2/4N is the per-firm monopoly profit. The value of deviation is more

complicated. Suppose the deviation occurs in period t. In the period-t spot market, firm i

(the deviating firm) expands production relative to the collusive level. It also signs forward
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contracts which allow it to obtain a Stackleberg leadership position in spot markets in periods

t + τ , for τ ∈ {1, 2, . . . , T}. In the first of these periods, τ = 1, competitors’ contracts are

fixed according to the collusive strategy. Competitors choose their output for the period

t + 1 spot market that best respond to firm i’s deviation and to forward positions taken

under the collusive strategy. For spot markets τ ∈ {2, . . . , T} periods ahead, competitors

choose forward quantities in periods t + 1 through t + τ − 1 as well as spot quanitities in

period t+ τ which best respond to firm i’s deviation. In light of Corollary 1, the punishment

is more severe in spot markets further ahead. For spot markets τ > T periods ahead, firm i

obtains no Stackleberg leadership position and all firms play according to the equilibrium of

Proposition 2. Let πd,τ denote the deviating firm’s profit τ periods post-deviation. We have

that,

πd,τ =



πm (N+1−x)2
4N

if τ = 0

πm
(
1− N−1

2N
x
)2

if τ = 1

πm N
1+(N−1)µτ if τ ∈ [2, T ]

πm 4NµT

(1+MT )2
if τ > T

(12)

where µτ and MT are as defined in Proposition 2.

We now provide the main theoretical result of the section:

Proposition 6 The aforementioned collusive strategies constitute a SPE if δ ≥ δ(x), where

for x ∈ [−1, 1], δ(x) solves,

V c(δ, x)

πm
=
πd,0

πm
+ δ

(
πd,1

πm

)
+

T∑
τ=2

δτ
(
πd,τ

πm

)
+
δT+1

1− δ

(
πd,T+1

πm

)
(13)

The demand and cost parameters, a and c, cancel in equation (13) and thus do not affect

the critical discount rate.

Of particular interest is how the critical discount rate changes with N . To make
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Figure 5: Effect of Forward Markets on Critical Discount Rates

progress, we use numerical techniques to calculate the “optimal” collusive strategy, x∗(N, T ),

that minimizes the critical discount rate as a function of N and T , and obtain the correspond-

ing critical discount rates. Figure 5 plots results for the case of T = 1. As one might expect,

the critical discount rate δ(x∗(N, 1)) increases with N , such that collusion becomes more

difficult to sustain. For comparison, we also plot the critical discount rate under Cournot,

which also increases with N . It is apparent that (i) forward markets decreases the critical

discount rate relative to Cournot; and (ii) this effect is more pronounced for small N . This

suggests that it is more likely that, in the presence of a forward market, firms will switch

from competition to collusion in response to an increase in concentration. These results are

robust to T > 1 in all of the numerical specifications we have explored: a large T discourages

deviation by making punishment harsher, but encourages deviation by providing a longer

period of Stackleberg leadership. The net effect appears to be small.

The relationship shown in Figure 5 derives from the “hedging effect” identified in

Section 4, whereby consolidation leads firms to reduce forward sales under the strategies

described by Proposition 2, thereby providing an additional boost to profits. Under Cournot,

the critical discount rate decreases in concentration because greater concentration causes the

incremental gain from deviation relative to cooperation to decline at a greater rate than the
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Table 1: Optimal Strategies and Critical Discount Rates

N 2 3 4 5 8 10 15

x∗(N, 1) -0.25 -0.07 0.11 0.25 0.51 0.64 0.75
h∗ 0.50 0.67 0.75 0.80 0.88 0.90 0.93
δ(x∗) 0.35 0.47 0.54 0.59 0.69 0.73 0.80
δ(h∗) 0.42 0.50 0.56 0.60 0.69 0.73 0.80

incremental gain of deviation relative to the punishment. Under contracting, the incremental

gain from deviation relative to punishment declines at an even lower rate due to the hedging

effect, leading to an even larger decline in the critical discount rate under contracting.

That in the presence of a forward market, the critical discount rate is increasing faster

in N , is robust to the forward position dictated by the collusive strategy. Suppose that

rather than x∗, firms sold a fraction h∗ = (N − 1)/N of the collusive output in the forward

market, where h∗ is the hedge rate in the stationary equilibrium (see equation 3). Table

1 shows that this has little impact on the critical discount rate. It is evident that δ(h∗)

lies between δ(x∗) and the critical discount rate under Cournot, so that our conclusion is

unchanged.

6 Conclusions

We have analyzed consolidation in the presence of a forward market. Our results show

that the welfare effects of consolidation are sensitive to the presence of a forward market

in important ways. While our model presupposes the existence of a forward market, it

is not hard to conceive of forward sales emerging organically. Whenever quantity is the

strategic variable and whenever the terms of sale can be revealed to a firm’s competitors, a

firm will have the strategic incentive to make sales in advance of production. To the extent

that such transactions do occur, the applicability of our results may well extend beyond the
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commodities with established futures markets.

While our results should be relevant for policy makers in the merger review process,

we believe an appropriate level of caution should be exercised. The model of capital stocks

which we have employed throughout is limiting as it does not reflect firms’ actual marginal

cost functions. In practice, consolidation may change the shape of firms’ marginal cost

functions in ways that exacerbate or mitigate harm from mergers.

We have also assumed the strategic variable to be quantity. In wholesale electricity

markets, spot prices are determined based on price-quantity schedules submitted by firms.

In the supply-function equilibrium model of Klemperer and Meyer (1989), supply functions

can be strategic substitutes or complements. Mahenc and Salanie (2004) study strategic

complements in the context of differentiated Bertrand spot market competition and find

that forward contracting increases spot market prices. We are aware of no studies that

analyze the effect of mergers within this context. If consolidation lessens the incentive to

contract in advance, then harm from consolidation is mitigated relative to our results.

Finally, we have assumed that all agents have perfect foresight so that the only motive

for firms to sell in the contract market is to influence spot market competition. As we do

not believe this to be the case in practice, our assumption of perfect foresight was made for

the sake of tractability. Allaz (1992) and Hughes and Kao (1997) show that when foresight

is imperfect and firms are risk averse, equilibrium hedge rates are higher than in the perfect-

foresight case. How hedge rates change in response to a merger in this setting has not been

explored to our knowledge. However, it is conceivable that our basic findings would still

obtain. Consolidation, by increasing market power, increases the value to the merged firm

of withholding output. To the extent that forward contracting even for the sake of hedging

risk comes at the expense of exercising market power, mergers may well limit the incentive

for firms to forward contract. We leave this issue and the other issues posed in this section

to future research.

34



References

Allaz, Blaise, “Oligopoly, Uncertainty and Strategic Forward Transactions,” International

Journal of Industrial Organization, 1992, 10, 297–308.

and Jean-Luc Vila, “Cournot Competition, Forward Markets and Efficiency,” Jour-

nal of Economic Theory, 1993, 59, 1–16.

Anderson, Ronald and Mahadevan Sundaresan, “Futures Markets and Monopoly,” in

RW Anderson, ed., The Industrial Organization of Futures Markets, Lexington: D.C.

Heath, 1984, pp. 75–112.

Brown, David P. and Andrew Eckert, “Electricity Market Mergers with Endogenous

Forward Contracting,” 2016. working paper.

Bushnell, James, “Oligopoly Equilibria in Electricity Contract Markets,” Journal of Reg-

ulatory Economics, 2007, 32 (3), 225–245.

, Erin Mansur, and Celeste Saravia, “Vertical Relationships, Market Structure and

Competition: An Analysis of the U.S. Restructured Electricity Markets,” American

Economic Review, 2008, 99 (1), 237–266.

Deneckere, Raymond and Carl Davidson, “Incentives to Form Coalitions with Bertrand

Competition,” The RAND Journal of Economics, 1985, 16 (4), 473–486.

Eldor, Rafael and Itzhak Zilcha, “Oligopoly, Uncertain Demand, and Forward Markets,”

Journal of Economics and Business, 1990, 42 (1), 17–26.

Farrell, Joseph and Carl Shapiro, “Horizontal Mergers: An Equilibrium Analysis,”

American Economic Review, 1990, 80 (1), 107–126.

Ferreira, Jose Louis, “Strategic Interaction Between Futures and Spot Markets,” Journal

of Economic Theory, 2003, 108, 141–151.

35



, “The Role of Observability in Futures Markets,” Topics in Theoretical Economics,

2006, 6 (1). Article 7.

Green, Richard, “The Electricity Contract Market in England and Wales,” Journal of

Industrial Economics, 1999, 47 (1), 107–124.

Hortacsu, Ali and Steven Puller, “Understanding Strategic Bidding in Multi-Unit Auc-

tions: A Case Study of the Texas Electricity Spot Market,” RAND Journal of Eco-

nomics, 2008, 39 (1), 86–114.

Hughes, John S. and Jennifer L. Kao, “Strategic Forward Contracting and Observabil-

ity,” International Journal of Industrial Organization, 1997, 16, 121–133.

Jaffe, Sonia and E. Glen Wyle, “The First-Order Approach to Merger Analysis,” Amer-

ican Economic Journal: Microeconomics, 2013, 5 (4), 188–218.

Klemperer, Paul D. and Margaret A. Meyer, “Supply Function Equilibria in Oligopoly

under Uncertainty,” Econometrica, 1989, 57 (6), 1243–1277.

Liski, Matti and Juan-Pablo Montero, “Forward Trading and Collusion in Oligopoly,”

Journal of Economic Theory, 2006, 131 (1), 212 – 230.

Mahenc, P. and F. Salanie, “Softening Competition Through Forward Trading,” Journal

of Economic Theory, 2004, 116, 282–293.

McAfee, R. Preston and Michael A. Williams, “Horizontal Mergers and Antitrust

Policy,” The Journal of Industrial Economics, 1992, 40 (2), 181–187.

Perry, Martin K. and Robert H. Porter, “Oligopoly and the Incentive for Horizontal

Merger,” American Economic Review, 1985, 75 (1), 219–227.

36



Salant, Stephen W., Sheldon Switzer, and Robert J. Reynolds, “Losses from Hori-

zontal Merger: The Effects of an Exogenous Change in Industry Structure on Cournot-

Nash Equilibrium,” Quarterly Journal of Economics, 1983, 98, 185–200.

Shapiro, Carl, “Theories of Oligopoly Behavior,” in R. Schmalensee and R. Willig, eds.,

Handbook of Industrial Organization vol 1, New York: Elsevier Science Publishers, 1989,

chapter 6, pp. 330–414.

Sweeting, Andrew and Xuezhen Tao, “Dynamic Oligopoly Pricing with Asymmetric

Information: Implications for Mergers,” 2016. working paper.

Waehrer, Keith and Martin K. Perry, “The Effects of Mergers in Open Auction Mar-

kets,” RAND Journal of Economics, 2003, 34 (2), 287–304.

Wolak, Frank, “An Empirical Analysis of the Impact of Hedge Contracts on Bidding

Behavior in a Competitive Electricity Market,” International Economic Journal, 2000,

14 (2), 1–39.

37



Appendices

A Proofs

A.1 Proof of Proposition 1

Fixing the price at a candidate equilibrium value, P , and using the definition of βi given in
the text, we can express equation (1) as,

qi =

(
ki

bki + d

)
(P − c) +

(
bki

bki + d

)
q0i

=
βi
b

(P − c) + βiq
0
i

Using the definitions of B and F 0 from the text, we can express total output as,

Q =
∑
i

qi =
B

b
(P − c) + F 0

Substituting the identity Q = (a− P ) /b into the left-hand side of the above expression
yields

a− P
b

=
B

b
(P − c) + F 0

It is straightforward to solve the above for the equilibrium value of P , which we then plug
into the above expressions for qi and Q to obtain their equilibrium values.

A.2 Proof of Lemma 1

Consider t = 1. From the expression of qi in Proposition 1, we have that,

∂qi
∂f 1

i

=
βi (1 +B−i)

1 +B
. (A.1)

From the same expression of qi, we also have that,

∂qj
∂f 1

i

= − βiβj
1 +B

.

so that ∑
j 6=i

∂qj
∂f 1

i

= −βiB−i
1 +B

. (A.2)
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Using (A.1) and (A.2), we have that,

R1
i ≡

∑
j 6=i

∂qj
∂f 1

i

/
∂qi
∂f 1

i

= − B−i
1 +B−i

Now consider any t = τ > 1. Fixing price at some candidate equilibrium, P , and using the
definition of µτi from the statement of the lemma, we can express equation (2) as,

qi = µτi

(
P − c
b

)
+ µτi (1 +Rτ

i ) q
τ
i (A.3)

Define the following terms:

F τ =
∑
i

µτi (1 +Rτ
i ) q

τ
i , F

τ
−i =

∑
j 6=i

µτj
(
1 +Rτ

j

)
qτj

We can then express total output as,

Q =
∑
i

qi = M τ

(
P − c
b

)
+ F τ (A.4)

Substituting Q = (a− P ) /b into the above yields,

a− P
b

= M τ

(
P − c
b

)
+ F τ (A.5)

It is straightforward to solve the above expression for the equilibrium value of P , which we
then plug into (A.3) to obtain,

qi (q
τ ) =

(
a− c
b

)
µτi

1 +M τ
+

µτi
1 +M τ

[(
1 +M τ

−i
)

(1 +Rτ
i ) q

τ
i − F τ

−i
]

(A.6)

Differentiating qi (q
τ ) with respect to the firm’s own forward position yields,

∂qi (q
τ )

∂f τi
=
µτi (1 +Rτ

i )

1 +M τ

(
1 +M τ

−i
)

(A.7)

Differentiating with respect to another firm’s position yields,

∂qj (qτ )

∂f τi
=
µτi (1 +Rτ

i )

1 +M τ
µτ

so that, ∑
j 6=i

∂qj (qτ )

∂f τi
=
µτi (1 +Rτ

i )

1 +M τ
M τ
−i (A.8)
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Using (A.7) and (A.8), we have that,

Rτ+1
i ≡

∑
j 6=i

∂qj

∂f τ+1
i

/
∂qi

∂f τ+1
i

= −
M τ
−i

1 +M τ
−i

A.3 Proof of Proposition 2

Set τ = T in equation (A.5). By construction, F T = 0 since T is the first period in which
forward contracts are bought or sold and F T has been defined as to reflect sales that occurred
prior to period T . Solving (A.5) for P , we have,

P = c+
a− c

1 +MT
(A.9)

Set τ = T in equation (A.4), where again, F T = 0 by construction. Substituting in expression
(A.9) for P in equation (A.4), we have,

Q =

(
a− c
b

)
MT

1 +MT

Finally, set τ = T in equation (A.6), whereby qTi = F T
−i = 0. We have,

qi =

(
a− c
b

)
µTi

1 +MT
(A.10)

We now proceed to characterize the firm’s forward sales. In equilibrium, it must be that
case that for any period τ > 1, qi (q

τ ) = qi (q
τ−1). In other words period-τ behavior cannot

cause firm i to deviate from its strategy; if it did, then the strategy was not an equilibrium
to begin with. Since the firm’s marginal cost in equation (2) is the same regardless of τ , so
too is its marginal revenue.

Equating marginal revenue between periods T − 1 and T , while using the fact that,
qTi = 0 and qT−1i = fTi , we have,(

qi − fTi
) (

1 +RT−1
i

)
= qi

(
1 +RT

i

)
It follows that the firm’s contracted quantity in period T is,

fTi =

(
RT−1
i −RT

i

1 +RT−1
i

)
qi,

where qi is the equilibrium value from equation (A.10). It’s uncommitted output at the
beginning of period T − 1 is,

qi − fTi =
1 +RT

i

1 +RT−1
i

(A.11)

Continuing in this manner, we equate marginal revenue between periods T − 1 and T − 2,
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so that, (
qi − fTi − fT−1i

) (
1 +RT−1

i

)
=
(
qi − fTi

) (
1 +RT−1

i

)
The firm’s contracted quantity in period T − 1 is,

fT−1i =
RT−2
i −RT−1

i

1 +RT−2
i

(
qi − fTi

)
,

where qi − fTi is the value from equation (A.11). Continuing in this manner, the expression
for the firm’s forward quantities is true by induction.

A.4 Proof of Corollary 1

Let Q(t) denote total output in a game with t rounds of forward contracting. Further, let
M (t) ≡ MT when there are t rounds of forward contracting. To complete the notation,
suppose that M (0) = B. From Proposition 2, we have that Q(t) > Q(t−1) if and only if
M (t) > M (t−1).

We can construct any MT recursively beginning with R1
i as given in Lemma 1. R1

i

feeds into µ1
i , which feeds into M1

−i, which feeds into R2
i and so on.

Claim 1 Outside the monopoly case, R1
i ∈ (−1, 0) and Rt+1

i < Rt
i regardless of T .

Proof. Outside the monopoly case, B−i > 0 for every i. It is obvious then that R1
i =

−B−i/(1 + B−i) ∈ (−1, 0). Suppose by way of induction that Rt
i > Rt−1

i regardless of the
number of contracting rounds in the game. If Rt

i > Rt−1
i , then µti > µt−1i , which implies

M t
−i > M t−1

−i . This implies that,

Rt+1
i = −

M t
−i

1 +M t
−i
< −

M t−1
−i

1 +M t−1
−i

= Rt
i

irrespective of T .
RT
i > RT−1

i implies that µTi > µT−1i . From this we have that, MT > MT−1, where it is
evident that M t = M (t) regardless of the number of contracting rounds in the game. Since
output is higher with more round of forward contracting, it is mechanically true that price
is lower.

In the monopoly case, B−i = 0 for the only producer i with strictly positive capital
stock. It follows that R1

i = 0, which implies µ1
i = βi, which implies M1 = B. Continuing in

this manner, it is evident that for any t, M t = M t−1 = · · · = B, so that total output and
hence price are invariant to the number of contracting rounds.

By Proposition 2, an individual producer’s output is greater with T = 1 round of
forward contracting if and only if,

µ1
i

1 +M1
>

βi
1 +B
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After manipulating terms, this is equivalent to,

βi >
1

R1
i

(
1 +B−i
1 +M1

−i
− 1

)
The right-hand side of the above expression is bounded above zero in all but the monopoly
case. Therefore, when there are at least three firms, the right-hand side remains bounded
above zero even as βi → 0. It follows that for βi sufficiently close to zero, the condition fails.

A.5 Proof of Lemma 2

It was established in the proof of Proposition 2 that a producer’s marginal revenue is equal
across each period. Equating its period-T marginal revenue with its period-0 marginal
revenue, we have,

qi
(
1 +RT

i

)
= qi − q0i

Rearranging terms, we have that,
q0i
qi

=
∣∣RT

i

∣∣
A.6 Proof of Lemma 3

The solution to the producer’s problem in period T is characterized by a modified version
of equation (2) in which τ = T and qTi = 0 for all i. Rearranging terms, we have,

P − C ′i
P

= −qi
P
P ′ (Q)

(
1 +RT

i

)
= −Q

P
P ′ (Q) si (1− hi)

=
si (1− hi)

ε

where the second line uses the result of Lemma 2 that hi = RT
i and uses the substitution,

qi = siQ. The third line uses the definition of demand elasticity, ε. Pre-multiplying by si
then summing over all i obtains the result.

A.7 Derivation of consumer and total surplus

Consumer surplus is social surplus net of expenditures, so that,

CS =

∫ Q

0

(a− bx− P ) dx = (a− P )Q− b

2
Q2 =

b

2
Q2.

Total surplus is social surplus net of costs, so that,
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TS =

∫ Q

0

(a− bx) dx−
∑
i

Ci = aQ− b

2
Q2 −

∑
i

Ci (A.12)

By construction, Ci = cqi + q2i /2ki, which implies that marginal cost is of the form, C
′
i =

c+ qi/ki. It follows that,

∑
i

Ci =
∑
i

qi

[
c+

1

2

(
C
′

i − c
)]

=
1

2

[
(c+ P )Q−

∑
i

qi

(
P − C ′i

)]
Substituting qi = Qsi and P = c+ bQ/M (from Proposition 2), we have,

∑
i

Ci =
Q

2

[
2c+

b

M
Q−

∑
i

si

(
P − C ′i

)]
(A.13)

Combining (A.12) and (A.13), we have,

TS =
Q

2

[
2 (a− c)− b (1 +M)

M
Q+

∑
i

si

(
P − C ′i

)]
(A.14)

Finally, from Proposition 2, b(1 +M)Q/M = a− c. Substituting this into (A.14) yields the
desired expression.

A.8 Proof of Proposition 3

The proof relies on the following being true: 1) ρCS = ρTS = 1 in the monopoly case; 2)
ρCS > 1 and ρTS > 1 in all allocations of capital other than monopoly; and 3) ρCS → 1 and
ρTS → 1 in the limit of an infinite sequence of symmetric equalizing transfers. The first of
these has already been shown in Corollary 1. We turn now to the second result.

Because output is higher in the presence of a forward market outside the monopoly case
(Corollary 1), so too is consumer surplus (i.e., ρCS > 1). The same is not necessarily true
with respect to total surplus when firms are asymmetric. There are two cases to consider.
If all firms expand output in the presence of a forward market, then since price exceeds
marginal cost, total surplus is necessarily higher. Alternatively, if some firms reduce output,
Corollary 1 showed that only small firms do so. It follows that since total output is higher
in the presence of a forward market, the reduction in output by smaller firms is more than
offset by the output expansion of large firms. Since larger firms are more efficient, total
surplus is higher.

The third result derives from (2). Rearranging terms in (2), we have that in period T ,
each firm chooses qi to solve, (P − C ′i)/P = si(1 − hi)/ε. Applying an infinite sequence of
symmetric equalizing transfers, si → 0 so that P = c regardless of hi.

43



A.9 Proof of Proposition 4

The proof proceeds in two parts, first showing that the structural effect is negative, then
showing that the hedging effect is negative. That both effects are negative is sufficient to
show that the transfer reduces consumer surplus. That the hedging effect alone is negative
is sufficient to say that the reduction in consumer surplus is mitigated absent the hedging
effect.

Lemma 4 SE ≡ a−c
(1+M)2

[(
µ1
β1

)2
dβ1 +

(
µ2
β2

)2
dβ2

]
≤ 0

Proof. Using,

dβ1 = be

(
β1
bk1

)2

dk (A.15)

and,

dβ2 = −be
(
β2
bk2

)2

dk = −
(
β2
bk2

)2(
β1
bk1

)−2
dβ1 (A.16)

SE can be expressed as,

SE =
a− c

(1 +M)2

[(
µ1

β1

)2

−
(
µ2

β2

)2(
β2
bk2

)2(
β1
bk1

)−2]
dβ1

Since dβ1 > 0, it is sufficient to show that the square-bracketed term is nonpositive. This
reduces to, (

µ1

bk1

)2

−
(
µ2

bk2

)2

≤ 0

Using difference-of-squares (i.e. x2 − y2 = (x+ y) (x− y)), it is sufficient that

µ1

bk1
− µ2

bk2
≤ 0,

or equivalently,
µ1k2 − µ2k1 ≤ 0

By construction, k1 ≥ k2. We can define δ ≥ 0 such that k2 ≡ k1 − δ. The above inequality
simplifies to,

(µ1 − µ2) k1 − µ1δ ≤ 0 (A.17)

Using the identity,

µi =
βi

1 + βiRi

=
βi (1 +B − βi)

(1 +B) (1− βi) + β2
i

(A.18)
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we have that,

(µ1 − µ2) k1 =
(1 +B) (1 +B − β1 − β2) (β1 − β2) k1

[(1 +B) (1− β1) + β2
1 ] [(1 +B) (1− β2) + β2

2 ]

=
(1 +B) (1 +B − β1 − β2) β1 (1− β2) δ

[(1 +B) (1− β1) + β2
1 ] [(1 +B) (1− β2) + β2

2 ]

If δ = 0, then condition (A.17) holds trivially. If δ > 0, condition (A.17) reduces to,
1 +B > β1, which is true by construction.

Lemma 5 HE ≡ − a−c
(1+M)2

∑
i µ

2
i dRi ≤ 0

Proof. We have that,

dRi = − dB−i

(1 +B−i)
2 ,

where,

dB−i =


dβ2 if i = 1

dβ1 if i = 2

dβ1 + dβ2 if i > 2

It follows that,

HE

(
a− c

(1 +M)2

)−1
= [dβ1 + dβ2]

∑
j 6=1,2

(
µj

1 +B−j

)2

+

[(
µ1

1 +B−1

)2

dβ2 +

(
µ2

1 +B−2

)2

dβ1

]

It suffices to show that each of the square-bracketed terms are negative. From equations
(A.15) and (A.16) we have that,

dβ1 + dβ2 =

[
1−

(
β2
bk2

)2(
β1
bk1

)−2]
dβ1

=

[(
β1
bk1

)2

−
(
β2
bk2

)2
](

β1
bk1

)−2
dβ1

=

[
β1
bk1
− β2
bk2

](
β1
bk1

+
β2
bk2

)(
β1
bk1

)−2
dβ1

= −
(
β2δ

bk1k2

)(
β1
bk1

+
β2
bk2

)(
β1
bk1

)−2
dβ1

≤ 0

This term is proportional to the reduction in consumer surplus in the baseline Cournot
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model. In the current setting, because the transfer will lead to a reduction in output among
the inside firms, they will be less responsive to forward sales of outside firms.

Finally, we have that,

(
µ1

1 +B−1

)2

dβ2 +

(
µ2

1 +B−2

)2

dβ1

=

[(
µ2

1 +B−2

)2(
β2
bk2

)−2
−
(

µ1

1 +B−1

)2(
β1
bk1

)−2](
β2
bk2

)2

dβ1

Due to difference-of-squares, it is sufficient that,(
µ2

1 +B−2

)(
β2
bk2

)−1
−
(

µ1

1 +B−1

)(
β1
bk1

)−1
≤ 0

Using equation (A.18), this is equivalent to,[
(1 +B) (1− β1) + β2

1

]
k2 +

[
(1 +B) (1− β2) + β2

2

]
k1 ≤ 0

Using the identity, k2 = k1 − δ, this reduces to,

− (1 +B − β1 − β2) β1 (1− β2) δ −
[
(1 +B) (1− β1) + β2

1

]
δ ≤ 0,

which is true by construction.
From Lemmas 4-5, we have that dCS = SE + HE < 0, which establishes the first

argument of the proposition. The second argument is that HE < 0 which is shown by
Lemma 5.

A.10 Proof of Proposition 5

In Cournot, the change in consumer surplus due to a consolidating transfer is,

dCS0 =
a− c

(1 +B)2
(dβ1 + dβ2)

Lemma 6 dCS0 ≤ SECS ≤ 0. The first inequality is strict in all but the monopoly case.
The second inequality is strict as long as k1 > k2.

Proof. It is sufficient to show that in all but the monopoly case,
(
µ1
β1

)2
>
(
µ2
β2

)2
. Using

equation (A.18), this expression reduces to

(1 +B) (B − β1 − β2) + β1β2 > 0 (A.19)

which is true by construction. In the monopoly case, µi = βi for all i, so that dCS0 = SE.
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From Lemma 6, the loss of consumer surplus is larger under Cournot if the hedging
effect is sufficiently small. Consider that in a highly unconcentrated industry, hi ' 1 for
every i. It follows that in such an industry, a small change in industry structure will have a
negligible impact on each firm’s hedge rate so that HE ' 0. It follows that there exists a
highly unconcentrated industry structure such that dCS0 < SE +HE.

We now show that the inequality is flipped in highly concentrated industries. Consider
the limiting structure as all capital is consolidated in firm 1. Let κ denote the fraction of
industry capital held by firm 1.

Lemma 7 limκ→1 SE = limκ→1 ∆CS0 < 0.

Proof. In the limit as κ → 1, βj → 0 for all j 6= 1 so that B → β1. From (A.18), we have
that,

lim
κ→1

(
µ1

β1

)
=

1

(1 +B) (1−B) +B2
= 1

and

lim
κ→1

(
µ2

β2

)
=

1 +B

1 +B
= 1.

It follows that,

lim
κ→1

SE = lim
κ→1

dCS0 = lim
κ→1

(dβ1 + dβ2)

=

(
1

(bk1 + e)2
− 1

e2

)
be · dk < 0

Meanwhile, since limκ→1HE = − bB
e
· dk < 0, it follows that there exist highly concen-

trated indsutry structures such that dCS0 > SE +HE.

A.11 Proof of Proposition 6

Let V d (δ, x) denote the present value of the most profitable deviation. It follows that the
collusive strategy constitutes a SPE if V c (δ, x) ≥ V d (δ, x). In what follows, we derive the
profit terms in expression (12).

τ = 0 : Prior to the opening of the spot market in period t (the period in which de-
viation takes place), each firm has a forward position of xQm/N from contracts signed in
period t− 1 under the collusive strategy. Firm i’s spot-market deviation solves,

πd,0 = max

(
a− xQm − N − 1

N
(1− x)Qm − q − c

)
q

Because the monopoly output is Qm = (a− c)/2, the deviation output is,

qd,0 =
(a− c)2

4N
(N + 1− x)
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It follows that,

πd,0 =
(a− c)2

4N

(N + 1− x)2

4N

= πm
(N + 1− x)2

4N
(A.20)

which denotes the profit from production in period t.
τ = 1 : Under the collusive strategy, the quantity traded by all firms j 6= i in period t

for production to be delivered in period t+1 is f t,t+1 = xQm/N . In determining the optimal
deviation in the market for one-period forward quantity, firm i takes into account that rival
firms will detect deviations in period t and will begin the punishment phase in the period
t+ 1 spot market. Using Proposition 1, firm i’s output and the spot-market price in period
t+ 1 given that firm i deviates to forward quantity fd,1 are,

qd,1 =
a− c+Nfd,1 − (N − 1) f t,t+1

1 +N

P d,1 = c+
a− c+Nfd,1 − (N − 1) f t,t+1

1 +N

In period t, firm i chooses fd,1 to solve,

πd,1 = max
(
P d,1 − c

)
qd,1

The optimal deviation satisfies,

fd,1 =
(a− c) (N − 1) [2N − (N − 1)x]

4N2

It follows that,

πd,1 =
(a− c)2

4N

(
1− (N − 1)x

2N

)2

= πm
(

1− (N − 1)x

2N

)2

(A.21)

τ ∈ {2, . . . ,T} : Suppose firm i’s deviation involves trading fd,τ in period t for produc-
tion to be delivered τ periods ahead. After the deviation is detected, there are τ −1 forward
openings and one spot opening in which firm i can be punished. We need then to solve for
a Stackleberg equilibrium in which firm i chooses fd,τ followed by τ trading rounds in which
all players play stationary SPE strategies. To do this, we follow the proof of Proposition
2 while requiring F t′ = 0 for all t′ > τ and F τ = µτ (1 +Rτ ) fd,τ . We have that firm i’s
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output and the spot price in period t+ τ are,

qd,τ =
µτ (a− c) + [1 + (N − 1)µτ ]F τ

1 +M τ

P d,1 = c+
a− c− F τ

1 +M τ

The optimal choice of fd,τ satisfies,

πd,τ = max
(
P d,τ − c

)
qd,τ

The solution requires that,

F τ = (a− c)
(

1 + (N − 2)µτ

2 [1 + (N − 1)µτ ]

)
It follows that,

πd,τ =
(a− c)2

4N

N

1 + (N − 1)µτ

= πm
N

1 + (N − 1)µτ
(A.22)

τ > T : For spot markets more than T periods ahead, firm i gains no Stackleberg
advantage, so price and quantity are derived from the symmetric stationary SPE derived in
Proposition 2. It follows that,

πd,T+1 =
(a− c)2

4N

4NµT

(1 +MT )2

= πm
4NµT

(1 +MT )2
(A.23)

Using (A.20) - (A.23), we have that,

V d (δ, x) = πd,0 + δπd,1 +
T∑
τ=2

δτπd,τ +
δT+1

1− δ
πd,T+1

The result is immediate from the definition of δ(x).
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