

Ex. No.
UPX0889

1:20-cv-03010-APM

#### Outline

- Part 1: Background
  - Brief recap of our auction
  - o What is a "pricing" launch?
  - o How do we evaluate a pricing launch?
- Part 2: Recent Innovations
  - Deep dive into Robust Fine Grained Squashing (Potiron)
  - A peek into mechanisms under development
- Questions

Mention we will not cover format pricing and format pricing in this talk.

Part 1: Background

#### Auction recap

We run a generalized second price auction (GSP)

- We auction off each position separately
- Each candidate gets a score, called Long Term Value or LTV
- For each position, we rank ads according to LTV (LTV must be > 0)
- We then pick the top to show in that position
- We move on to the next position and repeat, until we either run out of space or candidates

#### Long Term Value: The basic "vanilla" flavor

$$LTV = bid \cdot pctr - \beta$$
(Expected Cost Per Mille)

CPM Cost ("Blindness" cost)

#### **Second Pricing**

Winner pays minimum price needed to beat runner up

- 1. Equate LTV of winner to LTV of runner up
- 2. Solve for bid. Result is the costper-click (CPC)

In the equations:

- w: winner
- ru: Runner Up

$$LTV_w = LTV_{ru}$$

$$bid \cdot pctr_w - \beta_w = bid_{ru} \cdot pctr_{ru} - \beta_{ru}$$

$$bid \cdot pctr_w - \beta_w = bid_{ru} \cdot pctr_{ru} - \beta_{ru}$$
 
$$bid = \frac{bid_{ru} \cdot pctr_{ru} - \beta_{ru} + \beta_w}{pctr_w}$$

This becomes the CPC

#### Reserve Pricing

Where there is no competition (i.e. no runner up) winner pays the "blindness reserve"

$$LTV_w = 0$$

- 1. Equate LTV of winner to 0
- Solve for bid. Result is the reserve cost-per-click (CPC)

$$bid \cdot pctr_w - \beta_w = 0$$

In the equations:

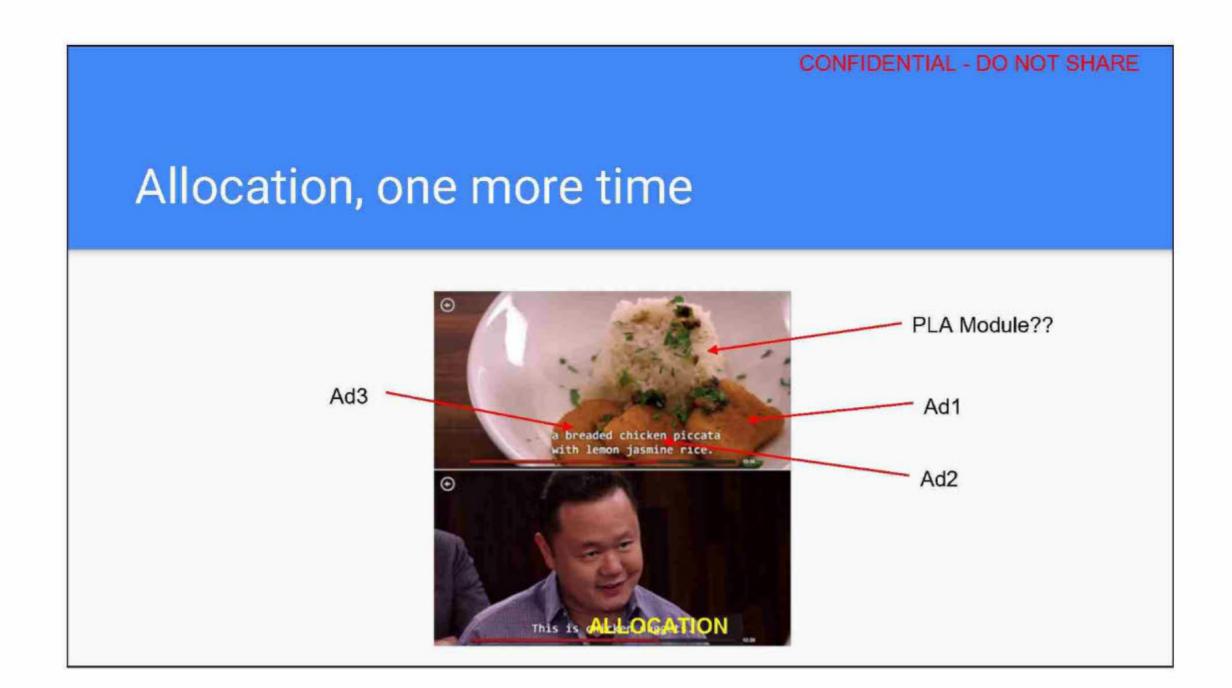
- w: winner
- ru: Runner Up

This becomes the CPC  $\longrightarrow bid = \frac{\beta_w}{pctr_w}$ 

#### **Efficient Auctions**

The auction has three functions:

The outcome of these two steps is referred to as an *allocation* 


1. Select the ads to show

2. Rank the ads that are selected

This is *pricing* 

{ 3. Price them

An allocation is efficient if it delivers clicks to advertisers who value them the most



## **Efficiency Loss**

Today in our auction, selection, ranking and pricing are all tied together

→ Changing the mechanism to affect one, has ramifications on the others

In particular, pricing changes often lead to worse allocations

→ This is referred to as efficiency loss



#### **Auction Pricing Mechanisms**

What are auction pricing mechanisms designed to do?

- Specifically designed to extract value from advertisers
  - o Advertisers derive value from the clicks we deliver to them
  - Are we pricing them adequately for the value they receive?
- Designed to minimize efficiency loss
  - A simple proxy to efficiency loss is click loss
  - o Since we're paid for clicks, we don't want to disproportionately lose them in the process
- Designed to minimize adverse response from advertisers
  - Is pricing too aggressive compared to value?
  - o Are certain advertisers at risk of withdrawing from the auction?

## **Auction Pricing Mechanisms**

What are they **not** designed to do?

- Not designed to increase clicks
  - We're actually happy when we minimize the click loss
- Not designed to focus on the user
  - o We resort to allocation mechanisms for this, e.g. Kumamon (go/kumamon-design)

## Source of Efficiency Loss

Pricing mechanisms often have side effects which lead to efficiency loss. Some example are:

- Click Loss. Can happen one of two ways:
  - Reranking: Higher pCTR ads are forced down the rank
  - o Impression Loss: You can't get clicks on ads that don't show!
- Adverse Advertiser Response
  - o Advertiser lower bids, change targeting, or downright leave the auction

REDACTED FOR PUBLIC FILING & ABRIDGED

But we have an auction designed to set prices... why do we need more?

#### When Vanilla pricing may no be sufficient

Second Pricing works great most of the time, but there are failure scenarios

- Weak or lack of Auction Pressure
  - When no competition is present, or when competition is of inferior quality
- Reserve pricing
  - o Reserve prices are generally lower than their second price counterparts

We need a way to extract value more directly

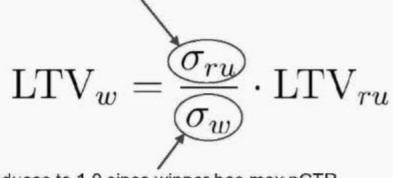
→ We need pricing mechanisms with pricing knobs

#### Canonical example: Squashing

#### How it works?

- Compress dynamic range of pCTRs in a given auction
- Achieved by moving all candidate pCTRs in the direction of the max pCTR in that auction
- Effectively simulates auction pressure

$$LTV_{w} = LTV_{ru}$$


$$\sigma_{w} \cdot LTV_{w} = \sigma_{ru} \cdot LTV_{ru}$$
Squashing multipliers

$$\sigma_c = \frac{\lambda \cdot pctr_{max} + (1 - \lambda) \cdot pctr_c}{pctr_c}$$

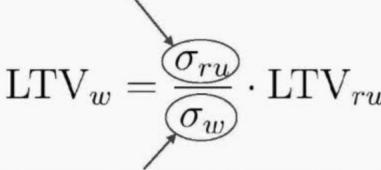
#### Pricing Example under squashing

Scenario 1: Winner has the maximum pCTR in the auction

Strictly > 1.0 ⇒ LTV of runner up "improves" ⇒ Auction pressure increase






Reduces to 1.0 since winner has max pCTR

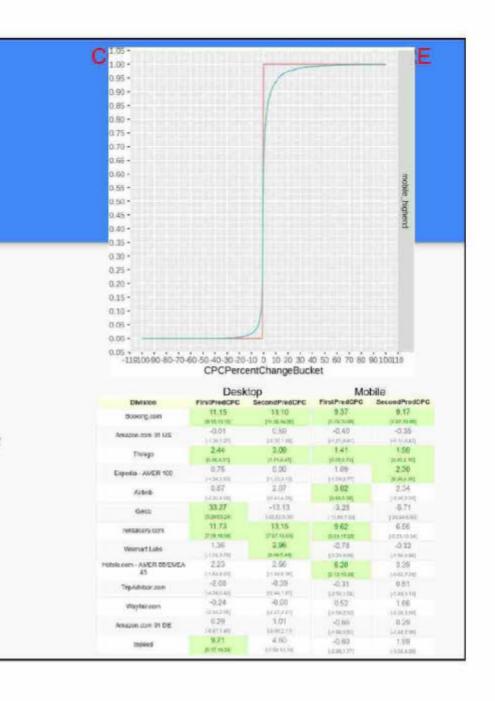
$$\sigma_c = \frac{\lambda \cdot pctr_{max} + (1 - \lambda) \cdot pctr_c}{pctr_c}$$

#### Pricing Example under squashing

Scenario 2: Runner up has the max pCTR in the auction

Reduces to 1.0 since runner up has max pCTR






Strictly > 1.0 ⇒ LTV of runner up "worsens" ⇒ Auction pressure decreases

$$\sigma_c = \frac{\lambda \cdot pctr_{max} + (1 - \lambda) \cdot pctr_{max}}{pctr_c}$$

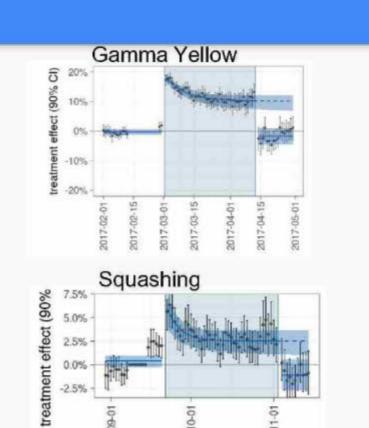
## Logs Analysis

- Tail Impact: What fraction of cost (or gains) come from adgroups whose CPCs are larger than a certain fraction
  - Weighted by cost: Provides a measure of risk
  - Weighted by gains: Provides a measure of stickiness
- Top Division Impact: For our top divisions, what does the CPC impact look like?
- MH-CPC: controls for advertiser mix



#### Comparison of Tail Impacts of various mechanisms

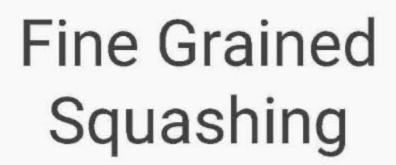
Risk: % of Ad Groups with CPC change > Threshold (spend weighted)


| Threshold | Potiron | Kabocha<br>(full) | Momiji | GammaYello<br>w<br>(full) | Sapporo<br>(full) |
|-----------|---------|-------------------|--------|---------------------------|-------------------|
| 12.5%     | 4%      | 3.5%              | 13.4%  | 4%                        | 1.54%             |
| 25.0%     | 2%      | 1.2%              | 0.57%  | 2%                        | 0.92%             |

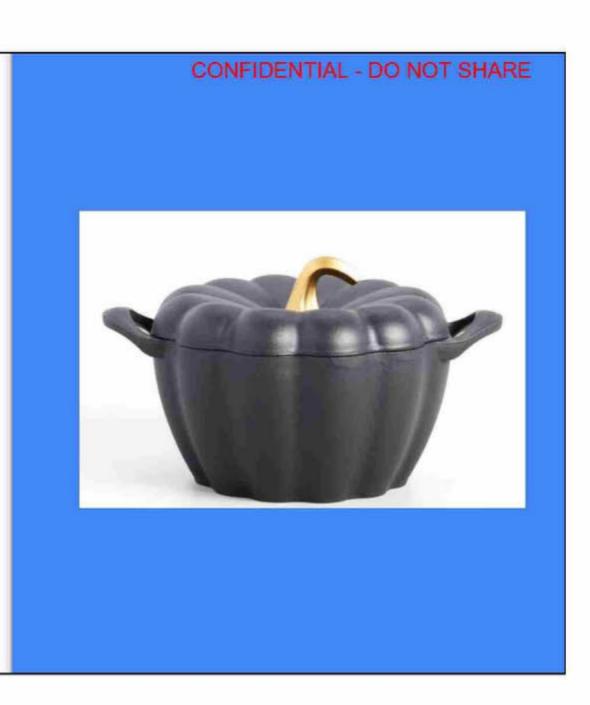
#### Stickiness: % of Ad Groups with CPC change > Threshold (gains weighted)

| Threshold | Potiron | Kabocha<br>(full) | Morniji | GammaYello<br>w (full) | Sapporo<br>(full) |
|-----------|---------|-------------------|---------|------------------------|-------------------|
| 12.5%     | 31%     | 20%               | 21%     | 45%                    | 90%               |
| 25.0%     | 18%     | 5%                | 1%      | 31%                    | 85%               |

# Understanding response: Advertiser Experiments


- Partition query space so as to maximize advertiser's interactions (i.e. discover micro markets)
- Randomly partition the space into treatment and control
- 3. Apply treatment for several weeks
- Run inference models to predict, as a function of dose, what the response under a launch would look like




# Handling contributions over time: Holistic Pricing effort

- Teams across AQ create value and move prices around
- Lower risk when we move prices along with value
- Developing tools to track, monitor the state of our system over time
  - o Excess CPC rule of thumb
- · Tune prices, safely, to
  - o Ensure good value sharing between advertisers / google
  - Stay in touch with the additional value created over time
  - Limit risk

## Part 2: Recent Innovations



**Project Potiron** 

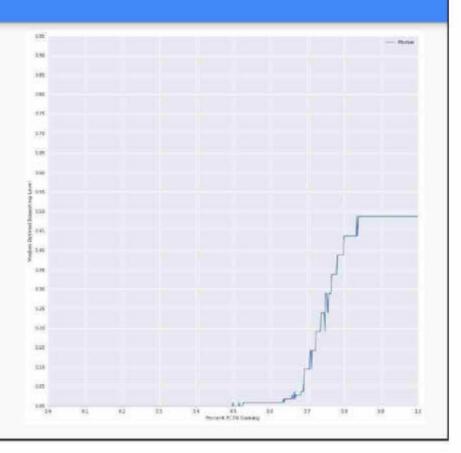


#### Motivation

Now that we know efficiency loss is a natural outcome of any pricing mechanism, how do we go about minimizing it?

- Can we identify, in a robust way, pockets of auctions that are more (or less) susceptible to efficiency loss?
  - > Turn down the pricing knob for auctions that are more susceptible
  - > Turn up the pricing knob for auctions that are less susceptible






Redacted

## Combatting Efficiency Loss: QSpace Squashing (aka Fine Grained)

QSpace is an AQ-wide service that clusters queries into ~23M clusters

- Could we fine tune squashing at that level?
  - Large fraction of spend lies in clusters that have a large fraction of auctions pCTR ranked
  - Opportunity for fine tuning it at that level



1

#### A teaser of what's to come...

The team is actively developing several pricing mechanisms

#### Stateful Pricing:

- > Borrow headroom from one auction to use in other auctions
- > Preliminary live experiments show a 8:1 Revenue-Efficiency Tradeoffs
- > Many infrastructure considerations

#### Probabilistic Click Pricing

- > Randomly drop ads to achieve desired click-cost curve properties
- > A possible replacement for format pricing

#### Fractional Formats

> Probabilistically show incremental formats that are unsold due to low bids

Questions?

Redac