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My Assignment 

To provide my expert opinion of the analysis and 
opinions offered by Google’s expert, Prof. Edward A. Fox, 

in his June 3, 2022 expert report (the “Fox Report”). 

Expert Rebuttal Report of Douglas Oard, Aug. 19, 2022, ¶ 4. 2 
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My Overall  Conclusion 

Prof. Fox substantially understates the 
beneficial effects of user-side data on 

search quality. 
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Prof.  Fox’s Assignment 

Prof. Fox states he was asked by Google counsel to: 

“test the extent to which Google’s search quality 
is affected by the volume of user interaction data 

available to train its ranking algorithms” 

Expert Report of Edward A. Fox, Jun. 3, 2022, at 5. 4 
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Prof.  Fox’s Conclusions 

DXD-26.002. 5 
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Prof. Fox’s Conclusions 

DXD-26.002 (modified). 6 
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The Basis for  Prof. Fox’s Central  Conclusion 
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My  Response to Prof. Fox’s Central  Conclusions 

Prof. Fox’s conclusions are unsupported because of: 

 Unmeasured benefits of user-side data in this 
experiment; 

 Measurement errors in the “quality gap”; and 

 Important benefits of user-side data that this experiment 
cannot measure 
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Many  Components Not Retrained 

  Measurable effect of Measured effect of 
user-side data user-side data 

Google only retrained 6 components, 
chosen based on their expected effect 
on web ranking (i.e., 10 blue links) 

Components were not chosen based 
on their effect on: 

• Indexing 
• Spelling Correction 
• Search features like images, 

video… 
• Search advertising 
• Whole-page ranking 
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Glue’s Importance to Whole-Page Ranking 

Redacted

“User interaction data from Glue is already 
being used in Web, KE, and WebAnswers. 
More recently, it is one of the critical 
signals in Tetris.” 

2016 

UPX0262, at -989 (Mar. 7, 2016) (emphasis added). 10 
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Glue Is Used to  “Trigger”  and Position Search Features 

Prof. Edward 
Fox 

Google’s Expert 
Witness 

“In simpler terms, Glue aggregates diverse  types  
of user interactions—such as  clicks, hovers,  
scrolls, and  swipes—and creates  a common  
metric to compare  web results and search 
features. This  process  determines  both whether 
a search  feature is  triggered and where it 
triggers on the page.”  

Expert Reply Report of Edward A. Fox, Oct. 10, 2022, ¶ 46 (emphasis added). 11 
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Prof.  Fox Has Never  Stated  that  Glue Was Retrained 
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DXD-26.004 (emphasis added). 12 



     

The IS4@5 Metric  Evaluates  Web  and Search  Features Results 

Prof. Edward 
Fox 

Google’s Expert 
Witness 

“Google  rates  the top five  
positions for IS4@5  counting  both  
search  features  like OneBoxes  and  
‘blue  links.’” 

Expert Report of Edward A. Fox, Jun. 3, 2022, App. A, n. 12 (emphasis added). 13 
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“10 Blue Links”  Ranking’s Effect on IS4@5  Can  Be Small  

 IS4@5 Weighting 

1.00 

0.50 

0.33 
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0.20 

Frozen Google Retrained Google 

Expert Rebuttal Report of Douglas Oard, Aug. 19, 2022, Table 2, at 23; UPX2134, at -077 (Apr. 2019). 14 

REDACTED FOR PUBLIC FILING



    

Search  Features “Trigger”  for Many Results 

2017 

“Small fraction of 
SERP is web 
results for many 
queries” 

Redacted

Redacted
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UPX1114, at -168 (May 3, 2017*) (emphasis added). 15 



    

  

 

    

My  Response to Prof. Fox’s Central  Conclusions 

Prof. Fox’s conclusions are unsupported because of: 

 Unmeasured benefits of user-side data in this 
experiment; 

 Measurement errors in the “quality gap”; and 

 Important benefits of user-side data that this experiment 
cannot measure 
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Correcting for Measurement  Errors 

  
  

1. Effect of Google “teaching to the test” 

Google IS4@5 

Actual IS4@5 “gap” is 
smaller than was measured 

Bing IS4@5 

    
  

2. Google’s choice to “rate” all queries using based on mobile presentation 
3. Google’s difficulties accurately rating Bing’s results 
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Teaching to  the Test: Google Trains Using IS, Bing Does Not 

RedactedRedacted

Component Name Data Used 

Navboost 
…Engineered functions have parameters that are 
learned by trying to maximize the IS ratings of the 
queryset result rankings they produce… 

RankBrain …Then fine-tuned on IS rating data… 

DeepRank …Then it is fine-tuned on rating IS data… 

QBST …Then the ranking integration is trained on rating 
data… 

Term Weighting …Then the ranking integration is trained on rating 
data. 

RankEmbedBERT Trained on documents, queries, click logs, and rating 
data… 

DXD-26.004 (modified). 18 
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Mobile Evaluation Understates Bing’s Search Quality 

Redacted

2020 

“On Desktop, Google is comparable to Bing” 

Redacted

   

 UPX0268, at -133 (Aug. 2020). 19 
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The  Measured “Quality Gap” Does  Not Account for This  

Prof. Edward 
Fox 

Google’s Expert 
Witness 

Q.  You don’t know  what the IS gap  would be if 
human raters were looking at  desktop  
presentation; right? 

A.  Google made  a decision some  years  ago to do 
all  the rater experiments with mobile.  So that’s  
all I  know. 

Testimony of Edward Fox, Oct. 31, 2023, 7977:5–8 (emphasis added). 20 
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“Scraped”  Results Can  Understate Bing’s Search Quality 

“Why are the two  methods  so different?” 

“In the full-page scrape, Bing has no user 
location so Google is much better. 

In live links SxS, both search engines utilize 
user location, but Bing shows rich features 
(map, listings) while Google only shows blue 
links.” 

2020 

UPX0220, at -882–883 (Jul. 15, 2020) (emphasis added). 21 
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Correcting for Accounting for 
Measurement Errors Unmeasured Benefits 

Measured difference 
between Bing and Google 

Correcting for 
measurement errors 

Effect of retraining 
six components with 
less user-side data 

Effect of retraining 
all components with 
less user-side data 

DXD-26.009 (modified). 22 
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My  Response to Prof. Fox’s Central  Conclusions 

Prof. Fox’s conclusions are unsupported because of: 

 Unmeasured benefits of user-side data in this 
experiment; 

 Measurement errors in the “quality gap”; and 

 Important benefits of user-side data that this experiment 
cannot measure 
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The Experiment Cannot Measure All Effects  of User-Side Data 

1 Effects  on the  Innovation  Cycle 

2 Effects  that the IS4@5 Metric  Can’t Measure 

3 Effects  that a Frozen  System Can’t Measure 

24 

REDACTED FOR PUBLIC FILING



The Experiment Cannot Measure All Effects  of User-Side Data 

1 Effects  on the  Innovation  Cycle 

2 Effects  that the IS4@5 Metric  Can’t Measure 

3 Effects  that a Frozen  System Can’t Measure 
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User-Side Data Benefits the Innovation Cycle 

Ideation and 
Implementation 

Evaluation and 
Decision 

People 
leverage 

user-side data 
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User-Side Data Benefits the Innovation Cycle 

Ideation and 
Implementation 

Evaluation and 
Decision 

Engineers 
leverage 

user-side data 

2727 
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John 
Giannandrea 

Apple SVP  of Machine 
Learning and  

AI Strategy; Former  
Google Head of  
Search  and AI 

Q.  …So the more queries a search engine sees,  
the more opportunities it has  to  improve  in this  
manner? 

A.  The  more opportunities  the engineers have to  
look  for patterns and  improve the algorithm, 
yeah. 

Testimony of John Giannandrea (Apple), Sept. 22, 2023, 2257:11–2257:15 (emphasis added). 28 
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Pandu Nayak 
VP, Search 

Q.  …[O]ne thing  that  Google  might do is look at  queries for  
inspiration on  what it might need to improve on. Does  that  
sound familiar? 

A.  Yes. 

Q.  And what does that  mean? 

A.  So we  create samples of  queries that -- on which we evaluate  
how  well we  are doing  overall using the IS metric, and we  look  
at  -- often  we  look at queries that have  low IS to try and  
understand what is going on,  what are we  missing  here…So  
that’s  a way of figuring  out  how we  can improve  our algorithms. 

30(b)(6) Deposition of Pandu Nayak (Google), Apr. 7, 2022, 153:4–153:24 (emphasis added). 29 
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User-Side Data Benefits the Innovation Cycle 

Ideation and 
Implementation 

Evaluation and 
Decision 

Engineers & 
Managers 
leverage 

user-side data 

3030 
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User-Side Data Is Key to Launch  Decisions 

2018 

   UPX0876, at -158 (Dec. 10, 2018*). 31 
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On the Role of  User  Interaction Data in  Innovation 

Prof. Edward 
Fox 

Google’s Expert 
Witness 

Q.  Whether  it’s innovation,  better  algorithms or  the like  
you didn’t study,  but that’s  what accounts  for the  other  
97 percent, in your  view? 

A.  So, I don’t  know what the other  parts are. I have  
guesses  because  I’ve  worked  in the  field  for a long  
time, but it’s  not  from user  interaction data. That's  
what I can tell. 

Testimony of Edward Fox, Oct. 30, 2023, 7850:3–7850:8 (emphasis added). 32 
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The Experiment Cannot Measure All Effects  of User-Side Data 

1 Effects  on the  Innovation  Cycle 

2 Effects  that the IS4@5 Metric  Can’t Measure 

3 Effects  that a Frozen  System Can’t Measure 

33 

REDACTED FOR PUBLIC FILING



    

Metrics Are Not  Search Quality 

“IS4  is an approximation  of user  utility-- treat it 
as such.” 

“[A]lways  look for real  user  value  supported by  
thorough analysis  and  other metrics.” 

2021 

UPX0217, at -792 (Jan. 28, 2021) (emphasis added). 34 
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The IS4@5  Metric  Is  Only a  Part of the Story 

2018 

“Raters may  not  understand technical queries” 

“Raters can not  accurately  the judge popularity of  
anything” 

2021 Redacted

Redacted

RedactedRedacted

         

  
 

   

“[I]n IS ratings, human raters don’t always pay enough 
attention to the freshness aspect of relevance or lack 
the time context for the query, thus undervaluing fresh 
results for fresh-seeking queries” 

UPX0204, at -223, -225 (Nov. 16, 2018*); UPX2133, at -420 (Aug. 11, 2021*) (emphasis added). 35 
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Google Uses Many Metrics to  Evaluate Search Quality 

2016 

DX0080, at -738 (Jun. 17, 2016). 36 
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Live Experiment Metrics Provide Crucial  Insights 

Redacted

2016 

Redacted

DX0080, at -743 (Jun. 17, 2016) (modified). 37 
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The Experiment Cannot Measure All Effects  of User-Side Data 

1 Effects  on the  Innovation  Cycle 

2 Effects  that the IS4@5 Metric  Can’t Measure 

3 Effects  that a Frozen  System Can’t Measure 

38 
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Frozen Systems Are Different from  Live Systems 
 

IS
4@

5
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Redacted Redacted

Expert Report of Edward A. Fox, June 3, 2022, App. A, at 34. 39 
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Frozen Systems Lack  Fresh User-Side Data 

“One important aspect of freshness is ensuring 
that our ranking signals reflect the current state 
of the world. 

Instant Glue is a realtime pipeline aggregating 
the same fractions of user-interaction signals as 
Glue, but only from the last 24 hours of logs, 
with a latency of ~10 minutes.” 

2021 

UPX2133, at -419 (Aug. 11, 2021*) (emphasis added). 40 
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Freshness Benefits from  User-Side Data 

Redacted

2018 

On  the  day of  the  attack,  [nice  pictures]  
has  different  interpretation.  Instant  
Glue  will  suppress  Image  Universal. 

News and pictures from Nice, 
France is the main intent of the 
query. 

Redacted

  
       

DX0116, at -409 (May 24, 2018*) (emphasis added). 41 
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This Experiment Can’t Test Effects of User-Side Data  on  Freshness 

Prof. Edward 
Fox 

Google’s Expert 
Witness 

Redacted

Expert Report of Edward A. Fox, June 3, 2022, App. A, at 10 (emphasis added). 42 
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Correcting for 
Measurement Errors 

Beneficial Effects 
of User-Side Data 
this Experiment 
Cannot Measure 

Measured difference Correcting for 
between Bing and Google measurement errors 

Accounting for 
Unmeasured Benefits 

Effect of retraining 
six components with 
less user-side data 

Effect of retraining 
all components with 
less user-side data 

DXD-26.009 (modified). 43 
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Prof. Fox’s Third Conclusion 

DXD-26.002 (modified). 44 
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The Results Show  a Substantial  Effect on  Long-Tail Queries 
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 Redacted

Head & Torso Long-Tail 
Queries Queries 

Beneficial effects of 
user-side data can be 
different for different 
queries 

Expert Rebuttal Report of Douglas Oard, Aug. 19, 2022, Table 8 (results for “training” query set). 45 
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Pandu Nayak 
VP, Search 

A.  So we  came up  with the  following  way of thinking  
about it:  Wikipedia  is a really  important  source  on the  
web, lots  of great information.  People  like  it a lot.  If  
we  took Wikipedia  out of  our  index, completely  out  of  
our index, then  that would lead  to an  IS  loss of  roughly  
about a half  point.  So that gives you a sense  for what  
a point  of IS  is.  A  half point is  a  pretty significant  
difference  if it represents  the  whole  Wikipedia  wealth 
of  information there… 

REDACTED FOR PUBLIC FILING
Testimony of Pandu Nayak (Google), Oct. 18, 2023, 6323:8–18 (emphasis added). 46 



Prof. Fox’s Final  Conclusion  
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DXD-26.002 (modified). 47 



 

 
  

Diminishing Returns Are Not  Vanishing Returns 

 
 

 

   

Point where 
benefits begin 
to decrease 

Amount of Training Data 

 Benefits continue to accrue 

 Benefits would be greater 
for tail queries, fine-grained 
location, etc. 
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DXD-26.003 (modified). 48 



    

Google’s Choices Confirm  Benefits Continue to Accrue 

Pandu Nayak 
VP, Search 

Q. Google  has a large  collection of sessions  logs.  Does  
each click, each piece  of data have  the  same  value  to 
Google? 

A. …And so there  is this  trade-off  in terms  of amount of  
data that  you use, the diminishing  returns of  the data, 
and the cost  of  processing  the data. And  so usually  
there’s a sweet  spot along the way  where the value has  
started diminishing, the costs have gone up, and  that’s  
where you would stop. 

REDACTED FOR PUBLIC FILING
Testimony of Pandu Nayak (Google), Oct. 18, 2023, 6337:6–6338:6. 49 



  

Google Clearly Gets “Returns”  from  User-Side Data 
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>13 Years of Bing’s User-Side Data 

13 Months of Google’s User-Side Data 
StatCounter GlobalStats (2020 Data). 50 
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