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Abstract: This paper investigates the pricing of patented traits in the U.S. hybrid corn seed 

market under imperfect competition. In a multiproduct context, we first examine how 

substitution/complementarity relationships among products can affect pricing. This is used to 

motivate multi-product generalizations of the Herfindahl-Hirschman index (GHHI) capturing 

cross-market effects of imperfect competition on bundle pricing. The GHHI model is applied 

to pricing of conventional and patented biotech seeds in the US from 2000-2007. One major 

finding is that standard component pricing in biotech traits is soundly rejected in favor of 

subadditive bundle pricing. The econometric estimates show how changes in market 

structures (as measured by both own- and cross-Herfindahl indexes) affect U.S. corn seed 

prices.  
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The U.S. agricultural biotechnology and seed industries have experienced many changes over the 

last few decades. On the one hand, new seeds including biotech patented traits offer new 

prospects for increasing agricultural productivity. This has stimulated a rapid adoption of biotech 

seeds in the U.S. for corn, soybean and cotton. On the other hand, mergers and acquisitions in the 

seed industry have resulted in concentrated seed markets dominated by a few large biotech firms. 

This has raised some concern that market power and imperfect competition could lead biotech 

firms to charge high prices for the biotech seeds, with potential adverse effects on farmers’ 

welfare. Biotechnology and genetic modifications have also stimulated product differentiation 

with patented traits being bundled with basic seed germplasm. Evaluating the pricing of such 

products under imperfect competition presents several challenges. One challenge is to evaluate 

the cross-markets impacts of market power under product differentiation. Another challenge is 

the empirical assessment of the pricing of bundled traits in biotech seed. A lack of available data 

has severely limited such investigations in previous research.1  

This paper addresses these challenges with a focus on the analysis of the pricing of 

patented traits in the U.S. corn seed market. It makes three important contributions. First, we 

develop a pricing model of differentiated products under a quantity-setting game. In a 

multiproduct context, we show the linkages between pricing and substitution/complementarity 

relationships among products with different bundled characteristics. This is used to motivate 

multi-product generalizations of the Herfindahl-Hirschman index (hereafter GHHI), which 

capture cross-market effects of imperfect competition on bundle pricing. Second, the GHHIs are 

introduced in an econometric analysis of the determinants of bundle pricing. To our knowledge, 

this is the first econometric investigation using GHHI to estimate the linkages between imperfect 

                                                 
1 In contrast, there is a rich body of analytical literature on bundle theory (e.g., Adams and Yellen 1976, 

McAfee et al. 1989, Fang and Norman 2006).  
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competition and multiproduct pricing. The model also allows for a test of standard component 

pricing (where the price of bundle is the sum of the prices of each individual component within 

the bundle). Third, we present an empirical application to the U.S. hybrid corn seed market using 

extensive survey data. The econometric estimates provide useful information on interactions 

between bundling and the exercise of market power.   

Genetically modified (GM) corn acres account for about 80 percent of the total U.S. corn 

acreage in 2007. GM corn seed includes patented genetic traits (such as insect resistance and/or 

herbicide tolerance) patented by biotech firms. These traits can be introduced into the seed either 

separately, or bundled together when multiple genetic traits are “stacked”. The proportion of 

U.S. corn acres planted with stacked seeds has gone from 2.1 percent in 2000 to 56.2 percent in 

2007. Also, there has been a sharp increase in the number of traits being bundled. Single-trait 

GM corn seed was first commercialized in 1996. Two years later the double-stacked corn seed 

(i.e., the bundling of two traits) was introduced, followed by the introduction of the triple-stacked 

system, and then the quadruple-stacked system in around 2006. Moreover, corn seed with eight 

traits is expected to be released by Monsanto and Dow AgroScience by 2010.  

The increased use of GM corn seeds has been associated with changing structure in the 

U.S. seed markets. After a flurry of horizontal and vertical mergers in the 1990s, the corn seed 

industry is now dominated by a few large biotech firms (Fernandez-Cornejo 2004). According to 

Graff, Rausser and Small (2003), these mergers have been motivated in part by the 

complementarities of assets within and between the agricultural biotechnology and seed 

industries. This indicates that trait bundling can be associated with cost reductions obtained from 

capturing economies of scope in the production of genetic traits. But bundling can also be part of 

a product differentiation strategy and price discrimination scheme intended to extract more profit 
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from farmers facing varying agro-climatic conditions. In this context, increased market 

concentration has raised concerns about adverse effects of imperfectly competitive pricing and 

the strategic use of bundling (Fulton and Giannakas 2001; Fernandez-Cornejo 2004). These 

issues suggest a need to investigate empirically the economics of pricing of hybrid corn seeds.   

Our econometric analysis quantifies the linkages between different combinations of traits, 

changes in market concentrations, and hybrid corn seed pricing. For bundled biotech traits, we 

reject standard component pricing of biotech traits. We find strong evidence of subadditive 

bundle pricing, which is consistent with price discrimination strategies and scope economies in 

the production of bundle-traited seeds. The analysis evaluates the interactive role of market 

concentrations and complementarity/substitution in demand. We document the linkages between 

traditional and cross-market concentrations and seed prices. This is done by estimating Lerner 

indexes, which provide useful information on departures from marginal cost pricing. Our 

analysis also illustrates how changing market structures (e.g., from mergers) relate to seed prices.  

The paper is organized as follows. The model section presents a conceptual framework of 

multiproduct pricing under imperfect competition. We then provide an overview of the U.S. corn 

seed market, followed by an econometric model of seed pricing, where the GHHIs reflect the 

exercise of market power. The estimation method and econometric results are then discussed and 

the empirical findings and their implications are reported. The conclusion section is at the last.   

 

The Model 

Consider a market involving a set {1,..., }N=N of N firms producing a set of T 

outputs. Denote by 

{1,..., }T=T

1( ,..., ,..., )n n n n
m Ty y y y T

+≡ ∈ℜ  the vector of outputs produced by the n-th firm, 

 being the m-th output produced by the n-th firm, m ∈ T, n ∈ N. The price-dependent demand n
my
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for the m-th output is ( n
m n

)p y
∈∑ N

. The profit of the n-th firm is: 

[ ( ) ] ( ),n n n
m m nm n

p y y C y
∈ ∈

−∑ ∑T N
 where denotes the n-th firm’s cost of producing . 

Assuming a Cournot game and under differentiability, the profit maximizing decision of the n-th 

firm for the m-th output  satisfies 

( )n
nC y ny

n
my

0,k n
n n
m m

p Cn
m kk y y

p y∂ ∂

∈ ∂ ∂
+ −∑ T

≤   (1a) 

0,n
my ≥   (1b) 

( ) 0.k n
n n
m m

p Cn n
m k mk y y

p y y∂ ∂

∈ ∂ ∂
+ −∑ T

=   (1c) 

Equation (1c) is the complementary slackness condition. It applies whether the m-th 

output is produced by the n-th firm (  > 0) or not (  = 0). This is important for our analysis: 

(1c) remains valid irrespective of the firm entry/exit decision in the industry; and for an active 

firm, (1c) holds no matter how many of the T products the firm chooses to sell.  

n
my n

my

Below, we consider the case of linear demands where ( )n
k k km mm n

p yα α
∈ ∈

= +∑ ∑T N
, 

with k
n
m

p
kmy

α∂

∂
=  and 0mmα < . We also assume that the cost function takes the form  = 

, where  is the set of positive outputs produced by the 

n-th firm. Here, 

( )n
nC y

( )n n
n mm

F S c y
∈

+∑ T m 0}{ :n n
jS j y= ∈ >T

( )n
nF S ≥ 0 denotes fixed cost that satisfies ( )nF ∅  = 0.  And  denotes 

variable cost, with constant marginal cost 

n
m mm

c y
∈∑ T

( )n
n

n
m

C y
my

c∂

∂
= , m ∈ T for all n ∈ N.  Note that the 

presence of fixed cost (where  > 0 for ( n
nF S ) nS ≠ ∅ ) implies increasing returns to scale. In this 

situation, marginal cost pricing would imply negative profit and any sustainable equilibrium 

must be associated with departures from marginal cost pricing. Fixed cost can also capture the 

presence of economies of scope. This would occur when ( ) ( ) ( )a bn n n aF F F b+ > ∪T T T T  for some 
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Ta ⊂ T and Tb ⊂ T, i.e. when the joint production of outputs  = { :  and  = 

 reduces fixed cost (Baumol et al., 1982, p. 75). A relevant example is the case of an 

R&D investment contributing to the joint production of  and .  

n
ay }a

n
jy j∈T n

by

{ : }b
n
jy j∈T

n
ay n

by

Assuming that the aggregate output of the m-th product is positive, , 

define 

0n
m mn

Y y
∈

= >∑ N

[0,1]
n
m

m

yn
m Ys = ∈  as the market share of the n-th firm for the m-th product. Dividing equation 

(1c) by  and summing across all n ∈ N yield mY

( n n
m m km k m kk n

)p c α
∈ ∈

= −∑ ∑T N
s s Y , (2) 

which can be alternatively written as 

m m km km kk
p c α

∈
= −∑ T

H Y

s

, (3) 

where  is the aggregate output of the k-th product, andkY ,n n
km k mn

H s
∈

≡∑ N
 with m, k ∈ T.  

Equation (3) is a pricing equation for the m-th product. It is a structural equation in the 

sense that both price mp  and the market shares in the ’s are endogenous (as they are both 

influenced by firms’ strategies). Yet, equation (3) provides useful linkages between price and 

market structure. It shows that the exercise of market power in (3) is given by  

kmH

m kmk km kM H Yα
∈

= −∑ T
, (4) 

which reflects departures from marginal cost pricing. A simple way to characterize this departure 

is through the Lerner index: m m

m

p c
m pL −= , where cm is marginal cost. The Lerner index  

measures the proportion by which the m-th output price exceeds marginal cost. It is zero under 

marginal cost pricing, but positive when price exceeds marginal cost. The Lerner index provides 

a simple characterization of the strength of imperfect competition (where the firm has market 

mL
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power and its decisions affect market prices). From equations (3) and (4), the Lerner index can 

be written as m

m

M
m pL = . This makes it clear that Mm in (4) gives a per-unit measure of price 

enhancement beyond marginal cost. Equation (4) also provides useful information on the 

structural determinants of Mm. Indeed, while  ∈ [0, 1], note that  → 0 under perfect 

competition (where the number of active firms is large) and = 1 under monopoly (where 

there is single active firm). In other words, the term M

kmH kmH

kmH

m in (4) captures the effects of imperfect 

competition and the exercise of market power on prices.  

When k = m, note that  is the traditional Herfindahl-Hirschman index (HHI) 

providing a measure of market concentration. The HHI is commonly used in the analysis of the 

exercise of market power (e.g., Whinston 2008). Given 

mmH

0,mmα <  equation (3) indicates that an 

increase in the HHI  (simulating an increase in market power) is associated with an increase 

in the Lerner index  and in price 

mmH

mL mp . As a rule of thumb, regulatory agencies have considered 

that  corresponds to concentrated markets where the exercise of market power can 

potentially raise competitive concerns (e.g., Whinston 2008).

0.1mmH >

2  

Equation (3) extends the HHI to a multiproduct context. It defines  as a generalized 

Herfindahl-Hirschman index (GHHI). When k ≠ m, it shows that a rise in the “cross-market” 

GHHI  would be associated with an increase (a decrease) in the Lerner index  and in the 

price 

kmH

kmH mL

mp  if 0 ( 0).kmα < >  This indicates that the signs and magnitudes of cross demand effects 

k
n
m

p
km y

α ∂

∂
=  affect the nature and magnitude of departure from marginal cost pricing. Following 

                                                 
2 The markets shares are often expressed in percentage term in the calculation of the Herfindahl-

Hirschman index. Then, the rule becomes Hmm > 1000 (Whinston 2008).   
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Hicks (1939), note that k
n
m

p
km y

α ∂

∂
=  < 0 (> 0) when products k and m are substitutes (complements) 

on the demand side, corresponding to situations where increasing  tends to decrease 

(increase) the marginal value of . The terms { : k ≠  m} in equation (3) show how the 

nature of substitution or complementarity among outputs on the demand side (through the 

terms

n
my

n
ky kmH

kmα ) influences the effects of market concentration on the Lerner index and prices3: a rise 

in  would be associated with an increase (a decrease) in the Lerner index  and in the price kmH mL

mp  when and  are substitutes (complements).  ky my

Note that equation (3) applies to general multiproduct pricing in a Cournot game under 

imperfect competition. It includes as a special case the pricing of bundled goods differentiated by 

their characteristics. In a way consistent with previous research (e.g., Adams and Yellen 1976; 

Venkatesh and Kamakura 2003; Fang and Norman 2006), it shows that the exercise of market 

power in bundling and bundle pricing can be complex. This indicates a need to assess 

empirically how the bundling of product characteristics interacts with market structures to affect 

pricing. This issue is explored next in the context of the U.S. corn seed market.  

 

The U.S. Corn Seed Market 

Our analysis relies on a large, extensive data set providing detailed information on the U.S. corn 

seed market. The data were collected by dmrkynetec [hereafter dmrk]. The dmrk data come 

from a stratified sample of U.S. corn farmers surveyed annually from 2000 to 2007.4 The survey 

                                                 
3  Our model provides a more general framework in analyzing the role played by substitution/ 

complementarity in multiproduct pricing under imperfect competition than Venkatesh and Kamakura 
(2003), who investigate such issues only in a monopolistic setup. 

4  Data prior to 2000 is not available from dmrk. The survey is stratified to over-sample producers with 
large acreage. The sampling weights are constructed using the farm census data.  
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provides farm-level information on corn seed purchases, corn acreage, seed types and seed 

prices. It was collected using computer assisted telephone interviews. On average about 40-50% 

of the farms surveyed each year remain in the sample for the next year. For 2000-2007, the dmrk 

data contains 168,862 observations on individual corn seed purchases from 279 USDA crop 

reporting districts (CRD)5 in 48 states.  A total of 38,617 farms were surveyed during 2000-

2007, with each farm on average purchasing four to five different corn seed each year. 

Since farmers typically buy their seeds locally, our analysis defines the “local market” at 

the CRD level. On average each farm purchased four to five different seeds each year6. To 

guarantee reliable measurement of market concentrations, we focus our analysis on those CRDs 

in the slightly expanded Corn Belt regions with more than ten farms sampled every year between 

2000 and 2007.  In total, our data contain 139,410 observations from 80 CRDs in 12 states.7   

 Starting in the 1930s, the development and diffusion of hybrid corn transformed the U.S. 

seed industry and contributed to the dominant role played by private seed companies. The dmrk 

data show that about 300 seed companies operate in the current U.S. corn seed market. However, 

only six biotech firms are involved,8 four of which own subsidiary corn seed companies.9   

Currently there are two major groups of genes/traits in the GM seed market: insecticide 

resistance designed to reduce yield damages caused by insects; and herbicide tolerance designed 

to reduce yield reductions from competing plants (weeds).  For corn, the insect resistance traits 

                                                 
5  A crop-reporting district (CRD) is defined by the U.S. Department of Agriculture to reflect local agro-

climatic conditions.  In general, a CRD is larger than a county but smaller than a state.   
6  Due to the fast turnover in the seed market, farmers may try new hybrid seeds every year, thus would 

purchase more than one hybrid seed type for their field. In addition, the U.S. EPA requires that farmers 
maintain at least 20 percent of their cropland for “non-insect resistant” hybrid seeds. 

7 They are:  IL, IN, IA, KS, KY, MI, MN, MO, NE, OH, SD, and WI. 
8  They are: Monsanto, Syngenta, Dow AgroSciences, DuPont, Bayer CropScience, and BASF. 
9 While one of the rest two firms has already entered the cotton seed market, the dmrk data show that it 

has not entered (yet) the U.S. corn seed market.  
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focus on controlling damages caused by two insects: the European corn borer (ECB),10 and 

rootworms (RW).11 The herbicide tolerance (HT) traits work with corresponding herbicides.  

After adopting the HT traited seed technology, farmers can apply the relevant herbicide to the 

field, which kills the weeds without damaging the traited crop. Some biotech seeds contain only 

one of these traits, while the bundled seeds contain multiple traits from some combination of the 

two groups of traits. 

Figure 1 shows the evolution of corn acreage shares reflecting adoption rates in the US 

from 2000 to 2007, for conventional seed, single-trait biotech seed, double-stacking biotech seed, 

triple-stacking biotech seed, and quadruple-stacking biotech seed. The conventional seed’s 

acreage share has decreased rapidly over the past eight years: from 67.5% in 2000 to 20.6% in 

2007.  Table 1 illustrates the average price of different hybrid corn seeds ($ per bag) from 2000 

to 2007. It indicates that biotech traits tend to add value to the conventional germplasm, and that 

multiple stacking/bundling is worth more than single stacking.  The information presented in 

figure 1 and table 1 is at the national level, which masks important spatial market differences. 

For example, while single-trait biotech seeds had a U.S. market share of 30% in 2000, the dmrk 

data show that conventional seeds still dominated many local markets. And while the U.S. 

conventional seed’s market share was 20.6% in 2007, some local markets were completely 

dominated by biotech seeds. This indicates the presence of spatial heterogeneity in the U.S. corn 

seed market. As shown below, such heterogeneity also applies to seed prices. 

                                                 
10 The European corn borer is a major pest of corn in North America and Europe. Yield loss due to ECB 

has been estimated to average about five percent, although damages can vary widely both over time and 
over space.  

11  Yield loss due to corn rootworms damages average around five percent in the US, amounting to about 
$800 million of reduced income for U.S. corn growers.  
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Figure 1.  Percentage of U.S. Acreage Planted in Conventional and GM corn seed , 2000 – 
2007. 

 

Table 1. Average price for different seeds ($ per bag), 2000 - 2007 

Year Conventional ECB Single RW Single HT Single Double Triple Quadruple 

2000 79.37 100.24 n/a 87.34 95.21 100.95 n/a 
2001 80.73 103.77 n/a 89.85 100.43 105.29 n/a 
2002 81.81 103.91 n/a 89.08 103.19 94.64 n/a 
2003 83.79 104.93 114.88 94.73 108.78 82.10 n/a 
2004 86.42 108.61 120.49 98.88 113.68 112.21 n/a 
2005 86.96 104.46 114.52 101.50 114.49 123.78 n/a 
2006 91.36 109.69 116.67 109.93 123.03 139.21 131.29 
2007 93.53 111.36 121.07 114.67 124.71 133.02 140.03 
Total 84.29 105.37 117.33 101.51 118.25 133.47 139.60 

 

Econometric Specification 

Our analysis of the determinants of corn seed prices builds on equation (3). As derived, equation 

(3) is a structural equation reflecting the determinants of pricing under imperfect competition in a 

multi-product framework. As discussed in the model section, fixed cost can generate economies 

of scope. Economies of scope are relevant here as R&D investment likely generates synergies in 

 10



the production of bundled/stacked seeds. This would in turn affect bundle pricing. Also, the 

effects of imperfect competition on price can be expected to depend on the nature of 

substitution/complementarity across bundles.  Below, we specify a modified version of (3) that 

reflects the effects of both bundling and market power on corn seed price.     

Consider for the case of seeds exhibiting different genetic characteristics. Partition the set 

of seeds into mutually exclusive types. Let Ki ∈ {0, 1} be a dummy variable for a seed of the i-th 

type, i = 1, ….J. Let  characterize conventional seed, and let 1i = {2,..., }J≡Q  denote the set of 

genetic traits associated with biotech seeds. Thus, 1 1K =  for conventional seeds. Each biotech 

seed includes at least one genetic trait in the set Q, with 1iK =  if the seed includes the genetic 

traits of the i-th type either individually or stacked with other traits, ,i∈Q  and otherwise. 

In the absence of bundling/stacking (where each seed can be of only one type), the K’s would 

satisfy  However, in the presence of stacking, some biotech seeds may include the 

genetic traits of more than one type, implying that 

0iK =

1
1.J

ii
K

=
=∑

1
1.J

ii
K

=
≥∑  Therefore, evaluating the effects 

of the genetic characteristics on seed prices requires a flexible specification that can capture 

bundling/stacking effects.   

We start with a standard model in which each purchase observation is at the farm-level 

and the price of a seed varies with its characteristics (e.g., following Rosen 1974). The price p 

represents the net seed price paid by farmers (in $ per bag).12 Consider the hedonic equation 

representing the determinants of the price p for a seed of characteristics   1 2{ , ,..., }:JK K K

{1,..., }

,i i ij ij ijz ijz ijzr ijzr
i J j i z j i r z j i

j i z j j i r z z j j i

p K K K Kβ δ δ δ δ
∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

> > > > > >

= + + + + + +∑ ∑∑ ∑∑∑ ∑∑∑∑
Q Q Q Q Q Q Q Q Q

φX ε

                                                

 (5a) 

 
12  We also estimated a log specification of the price equation. The econometric results were qualitatively 

similar to the ones reported below.  

 11



where X is a vector of other relevant covariates, and ε is an error term with mean zero and 

constant variance. In equation (5a), ijK  is a dummy variable for double-stacking the i-th and j-th 

genetic type. Similarly, ijzK and ijzrK  are dummy variables representing respectively triple-

stacking and quadruple-stacking.13    

 For conventional seeds and single-trait seeds, the dummy variables ,ijK ijzK  and ijzrK  are 

all zero. This implies that the coefficients ,ijδ  ,ijzδ  and ijzrδ  in (5a) capture the effects of 

bundling on seed price. The dmrk data reveal that trait bundling is common, which allows us to 

test for its price impacts. One important special case occurs when 0ij ijz ijzrδ δ δ= = = ,  which 

corresponds to standard component pricing.  Here, the price of seed is just the sum of the value 

of its genetic components (as captured by∑i ii Kδ , with iδ  measuring the unit value of the i-th 

genetic material). When the parameters ,ijδ  ,ijzδ  and ijzrδ  are not all zero, equation (5a) allows 

for non-linear pricing associated with bundled goods under stacking.  

In general, the parameters ,ijδ  ,ijzδ  and ijzrδ  can be either positive or negative. When 

positive, these parameters would reflect super-additive bundle pricing. This could occur when 

component demands are complementary, i.e., when adding a trait to an existing trait system 

increases consumer’s valuation for the stacked system more than the marginal value of the 

additional trait. Alternatively, negative parameters would correspond to sub-additive bundle 

pricing. The price of bundled goods would then be “discounted” compared to component pricing. 

                                                 
1r

13 Note that the K’s in (5a) satisfy
{1,..., }

2 3i ij ijz ijz
i J j i z j i r z j i

j i z j j i r z z j j i

K K K K
∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

> > > > > >

− − −∑ ∑∑ ∑∑∑ ∑∑∑∑
Q Q Q Q Q Q Q Q Q

= , 

implying that they are perfectly collinear with the intercept. To deal with this issue below, we set δ1 = 0 
in (5a), meaning that the intercept reflects the price of conventional seeds and that the other δ 
parameters measure price differences relative to conventional seeds. 
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This could happen under two scenarios. First, this could be associated with economies of scope 

on the production side, if the joint production of bundled goods leads to a cost reduction that gets 

translated into lower bundle price. Second, this could be associated with price discrimination on 

the demand side, if discounting the price of a bundled good can help increase firm profit. In 

general, equation (5a) provides a framework to analyze the nature of bundle pricing.  

Next, as shown in equation (3), we introduce market power effects in (5a) by specifying 

 0 ,i i ii iiHδ δ δ= +   (5b) 

where  is the HHI ( being the market share of the n-th firm in the market for 

the i-th seed type) measuring market concentration in the i-th market. We further specify  

n n
ii i in

H
∈

≡∑ N
s s n

is

0 ij ij i ji ji j
j i j i
j i j i

H K H Kβ β β β
∈ ∈ ∈ ∈
> >

= + +∑∑ ∑∑
Q Q Q Q

,  (5c) 

where  being the cross-market GHHI discussed in the model section and 

measuring concentration for firms operating in the market for both i-th and j-th characteristics. 

With this specification, the coefficient of the traditional HHI, 

n n
ij ji i j

n
H H s s

∈

≡ ≡ ∑
N

0iiδ ≠ , would reflect market 

power related to the i-th characteristic, while the coefficient of the GHHI, 0ijβ ≠  or 0jiβ ≠ , 

would reflect the exercise of market power across characteristics.  

Since the HHI and the GHHI’s are zero under competitive conditions, it follows from 

equations (4) and (5a)-(5c) that the effect of market power on price is given by 

1
{1,..., }

i ii i ij ij i ji ji j
i J j i j i

j i j i

M H K H K H Kδ β β
∈ ∈ ∈ ∈ ∈

> >

= + +∑ ∑∑ ∑∑
Q Q Q Q

. (6) 

In a way similar to equation (4), equation (6) provides a representation of the linkages 

between imperfect competition and pricing. As noted in the model section, the term M in (6) 

measures the difference between price and marginal cost. It can be used to obtain the associated 
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Lerner index L = M
p . When positive, M reflects the price enhancement associated with imperfect 

competition.     

Our analysis is based on five seed characteristics (J = 5): Conventional  insect 

resistance trait ECB insect resistance trait RW 

1( 1K = );

); );2( 1K = 3( 1K =  herbicide tolerance trait HT1 

 and herbicide tolerance trait HT2 .4( 1K = ); )K5( 1=  Note that this distinguishes between two 

types of herbicide tolerance: HT1 and HT2. The reason is that, in our sample, HT1 and HT2 are 

sometimes stacked/bundled together. This implies that farmers see HT1 and HT2 as being 

different (otherwise, no farmer would pay extra for a second herbicide tolerant technology).  

Our model specification allows us to estimate the pricing of each seed type along with 

stacking/bundling effects. To illustrate, from (5a)-(5c), the price equation for conventional seed 

 is  1(K =1)

5

1 0 01 11 11 1 1
2

.j j
j

p H Hβ δ δ β ε
=

= + + + + +∑ φX  (7a) 

For a seed marketed with a single ECB trait (K2 = 1), the price equation becomes   

5

2 0 02 22 22 21 21 2 2
3

.j j
j

p H H Hβ δ δ β β ε
=

= + + + + + ⋅ +∑ φ X  (7b) 

And for a double-stacking seed with an insect resistance trait (ECB) and our first herbicide 

tolerance trait (HT1) , the price equation is 2 4 24( 1, 1,  and 1)K K K= = =

3 5

24 0 02 04 24 22 22 44 44 21 21 4 4 2 2 45 45
1 3

i i j j
i j

p H H H H H Hβ δ δ δ δ δ β β β β
= =

= + + + + + + + + + + +∑ ∑ φX ε .  (7c) 

Comparing equations (7b)-(7c) reveals how our model captures price differences between 

single-trait seed and bundled/stacked seeds. It shows how both stacking and market 

concentration affect pricing. Equation (7c) contains all the dummy variables reflecting 
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stacking/bundling of traits along with their interaction effects with the traditional HHI’s: Hii. It 

also contains the parameters linking price to the generalized cross market GHHI’s: Hij, i ≠ j. Note 

that market share information is contained in both the traditional and cross Herfindahl indexes. 

This means that the effects of market concentration and imperfect competition on prices are 

complex. Evaluating these effects will be addressed in the implications section.   

The relevant covariates in X include location, a time trend, each farm’s total corn 

acreage, and binary terms covering the range of how each purchase was sourced. Location is 

represented by state dummy variables, along with the longitude and latitude of the county where 

the farm is located. These variables capture spatial heterogeneity in farming systems and agro-

climatic conditions (including the length of the growing season). The latitude and longitude 

variables are specified in both linear and quadratic forms, reflecting possible non-linearity in 

their effects. For example, according to Griliches (1960), the corn seed industry first developed 

new hybrids that were best adapted to land in the center of the Corn Belt due to profitability 

consideration. It is likely that the same path is followed in the biotech seed development, which 

may result in a significant difference in seed prices between the center and fringe regions. The 

time trend is included to capture the advances in hybrid and genetic technology through the years 

of the study. Farm acreage captures possible price discrimination effects related to farm size. 

While there are a total of 16 different purchasing sources, most seeds are purchased through 

“Farmer who is a dealer or agent” (33.1%), followed by “Direct from seed company or their 

representatives” (29%), and “Myself, I am a dealer for that company” (16.1%). Note that a 

farmer may choose multiple sources to buy his seeds. Including source of purchase as an 

explanatory variable in (5a) captures possible price discrimination schemes affecting the seed 

price paid by farmers.   
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The market share of biotech seeds has increased significantly during the years of our 

study (see figure 1).  In many cases, we found “entry” and “exit” of traited seeds in some local 

markets. In order to investigate whether entry/exit may affect seed prices beyond the H effects, 

we also introduce entry/exit variables in the specification (5a). In our data, we observe local exits 

in the conventional seed ( ) markets. We also observe local entry in the HT1 trait ( ) 

markets, the ECB trait ( ) markets and the RW trait ( ) markets. To capture entry-exit effects 

on seed price, the following binary terms are included: Post-exit1 = 1, when Pre-entry2 

= 1 when  Pre-entry3 = 1 when 

1K 4K

2K 3K

11 0;H =

22 0;H = 33 0;H = and Pre-entry4 = 1 when 14
44 0.H =   

 

Estimation 

Table 2 reports summary statistics of key variables used in the analysis.  The mean values of 

Hii’s show that the conventional seed markets are quite concentrated, but are considerably less 

concentrated than the biotech trait markets. Each CRD is presumed to represent the relevant 

market area for each transaction; thus, all H terms are calculated at that level.  Conducting 

market concentration analysis at the CRD level allows us to evaluate the possibility that seed 

companies recognize localized market power for seeds with favorable performance parameters 

under various agro-climatic conditions.  For the 80 CRDs covering the eight years of our data, 

the average conventional seed HHI is 0.242, which is well above the Department of Justice’s 

threshold of 0.18 for identifying "significant market power".  The average HHI for the three 

biotech seeds markets is over 0.80.  

                                                 
14 Note that we do not construct an event dummy for  as we do not observe any pattern of entry or 

exit for this trait. 
5 ,K
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One econometric issue in the specification (5a)-(5c) is the endogeneity of the H’s. Both 

market concentrations (as measured by the H’s) and seed pricing can be expected to be jointly 

determined as they both depend on firm strategies in the seed market. To the extent that parts of 

the determinants of these strategies are unobserved by the econometrician, this would imply that 

the H’s are correlated with the error term in equation (5a). In such situations, least-squares 

estimation of (5a)-(5c) would yield biased and inconsistent parameter estimates (due to 

endogeneity bias). The solution is to consider estimating equation (5a)-(5c) using an instrumental 

variable (IV) estimation method that corrects for endogeneity bias. To address this issue, we first 

test for possible endogeneity of the H’s using a C statistic calculated as the difference of two 

Sargan statistics (Hayashi 2000, p. 232). Under the null hypothesis of exogeneity of the H’s, the 

C statistic is distributed as Chi-square with degrees of freedom equal to the number of variables 

tested. The test is robust to violations of the conditional homoscedasticity assumption (Hayashi 

2000, p. 232).15 In our case, the C statistic is 200.16, showing strong statistical evidence against 

the null hypothesis of exogeneity of the H’s.  

The presence of endogeneity motivates the use of an instrumental variable (IV) estimator. 

We used the lagged value of each H and the lagged value of the market size for each trait 

(including the conventional seed) as instruments. The use of lagged values reflects the time 

required to grow the seeds, as seed companies typically make production decisions a year ahead 

of the marketing decisions. Indeed these lag values are part of the information set available to the 

seed companies at the time of their production decisions. The Hansen over-identification test is 

not statistically significant, indicating that our instruments appear to satisfy the required 

                                                 
15 Under conditional homoskedasticity, the C statistic is numerically equivalent to a Hausman test 

statistic. 
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orthogonality conditions. On that basis, equation (5a)-(5c) was estimated by two-stage-least-

square (2SLS). Further evaluation of these instruments is presented below.    

Table 2. Summary statistics 

Variable Number of 
observationsa,b

Mean Standard 
Deviation 

Minimum Maximum

Price ($) 139410 99.61 23.61 3 230 
Farm size (acre) 30273 489.48 587.87 5 15500 

Longitude 30273 91.59 4.783 80.75 103.76 
Latitude 30273 41.71 2.010 36.71 46.98 

11H  639 0.242 0.152 0.067 1 

22H  639 0.769 0.188 0.337 1 

33H  313 0.907 0.150 0.430 1 

44H  639 0.772 0.175 0.434 1 

12H  601 0.085 0.070 0.99E-04 0.518 

13H  291 0.108 0.088 1.10E-03 0.632 

14H  580 0.075 0.079 9.58E-05 0.526 

23H  312 0.761 0.169 0.172 1 

24H  617 0.577 0.261 0.010 1 

a/ The data contain 139410 observations from  CRDs spanning 8 years (2000-2007). Each farm purchases multiple 
seeds, therefore the number of observations for farm size is the total count of farms per year. The longitude and 
latitude information is based on the county level measurement for each farm.  

34H  311 0.785 0.198 0.056 1 

b/ For the market concentration measurements H’s, we only report the summary statistics of those non zeros at the 
CRD level, therefore the number of observations is at most 80× 8 = 640. 

 

A second pretest was to evaluate the model for the effects on prices from unobserved 

heterogeneity across farms (e.g., unobserved pest populations). A Pagan-Hall test16 found strong 

evidence against homoscedasticity of the error term in (5a). As reported earlier, each farm 

purchases on average four to five different seeds. Some large farms actually purchase up to 30 

different hybrid seeds in a single year. Unobserved farm-specific factors affecting seed prices are 

expected to be similar within a farm (although they may differ across farms). This suggests that 
                                                 
16  Compared to the Breusch-Pagan test, the Pagan-Hall test is a more general test for heteroscedasticity in 

an IV regression, which remains valid in the presence of heteroscedasticity (Pagan and Hall 1983). 
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the variance of the error term in (5a) would exhibit heteroscedasticity, with clustering at the farm 

level. On that basis, we relied on heteroscedastic-robust standard errors under clustering at the 

farm level in estimating equation (5a)-(5c).   

Additional tests of the validity of the instruments were conducted.  In the presence of 

heteroscedastic errors, we used the Bound et al. (1995) measures and the Shea (1997) 

partial 2R statistic to examine the possible presence of weak instruments. The F-statistics testing 

for weak instruments were large (i.e., much above 10). Following Staiger and Stock (1997), this 

means that there is no statistical evidence that our instruments are weak. Finally, The 

Kleibergen-Paap weak instrument test was conducted (Kleibergen and Paap, 2006),17 yielding a 

test statistic of 5.81. Using the critical values presented in Stock and Yogo (2005), this indicated 

again that our analysis does not suffer from weak instruments.  

 

Empirical Results 

Equation 5(a)-(5c) is estimated using 2SLS, with heteroscedastic-robust standard errors under 

clustering. We first tested whether the cross-market GHHI impact is symmetric: H0: βij = βji, 

where the β’s are the coefficients of the corresponding GHHI’s. Using a Wald test, we fail to 

reject the null hypothesis for . On that basis, we imposed the symmetry restriction for  in 

the analysis presented below.  

13H 13H

Table 3 reports the results. For comparison purpose, the ordinary least square (OLS) 

estimation results are also reported. The OLS estimates of the market concentration parameters 

differ substantially from the 2SLS results. This reflects the endogeneity of our market 

concentration measures (and its associated bias). Our discussion below focuses on the 2SLS 
                                                 
17 Note that the Kleibergen-Paap test is a better choice compared to the Cragg-Donald test for weak 

instruments: the former remains valid under heteroscedasticity (while the latter one does not).  
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estimates as IV/2SLS estimation corrects for endogeneity bias. We first discuss the price impacts 

associated with introducing single biotech traits. This builds toward a broader assessment of the 

more complex issues related to the marginal price impacts derived from the stacking of traits and 

from the role that market power has shifting rent between farmers and the seed industry.  In the 

implications section, simulations of the Illinois corn seed market provides additional insights 

about the interactive forces that derive from biotechnology.   

Characteristics effects: Compared to conventional seeds, the results show that the 

insertion of single biotech traits led to sizeable seed price premiums in three of the four traits 

considered. The coefficients of the terms  (ECB),  (RW) and  (HT2) are each positive 

and statistically significant. They are respectively $25.64, $46.06, and $9.63 per bag, suggesting 

the presence of significant premiums for these biotech traits. The coefficients of  (HT1) and  

(HT2) differ, providing evidence of differences between the two herbicide-tolerant traits HT1 

and HT2. The coefficient of  (HT1) is negative but not statistically significant. However, note 

that the K’s also appear in interaction with the H’s in (5a)-(5c).  This means that coefficients of 

the K’s alone provide only partial information on how prices vary across seed types. The 

magnitude of the price premium across seed types will be analyzed in more detail later.  

2K 3K 5K

4K 5K

4K

The coefficients of the terms ,ijK ,ijzK and ijzrK  provide useful information on the effects 

of trait bundling on seed price. All of the stacking coefficients except for  are negative and 

statistically significant. The coefficient for  is positive but not statistically significant. As 

discussed in the econometric specifications section, component pricing is associated with the null 

hypothesis that all stacking coefficients are zero. Using a Wald test, the null hypothesis that the 

coefficients of stacking effects are all zero is strongly rejected. This provides convincing 

evidence against component pricing of biotech traits in the corn seed market. The negative and 

35K

35K
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significant stacking effects also indicate the prevalence of subadditive pricing of corn seed in 

their individual components. Subadditive pricing may be driven by price discrimination 

associated with demand heterogeneity (higher prices being associated with more inelastic 

demands). But the fact that all of the stacking coefficients are negative indicates the likely 

presence of economies of scope in the production of bundled/stacked seeds. This would be 

consistent with synergies in R&D investment (treated as fixed cost) across stacked seeds. For 

example, a given R&D investment can contribute to the production of multiple seed types, 

meaning that bundling can help reduce the overall cost of producing seeds. In this context, the 

subadditivity of prices would reflect the fact that seed companies share with farmers at least 

some of the benefits of scope economies.   

Market concentration effects: The model incorporates market share information about 

each of the trait using the traditional Herfindahl indexes along with generalized cross-

Herfindahl indexes

iiH

ijH as given in equations (5a)-(5c).  Here, we discuss the partial effects of 

concentration and withhold a global assessment of market concentration until the implications 

section.18  The partial effects of changes to the traditional Herfindahl indexes for each trait are 

presented in the first four rows of the “Market concentration effects”. In this context, our 

estimates indicate that an increase in market concentration for conventional seeds (as measured 

by ) has a positive and statistically significant association with the price of conventional 

seeds. More specifically, a one-point increase in  is associated with a $14.81 per bag increase 

in the price of conventional seeds. The partial effect of concentration in the RW trait market 

11H

11H

                                                 
18  We do not observe non-zero because no firm that operates in HT2 market sells a conventional 

seed.  Similar situations arise for  and . When present, =1 because only one firm 
operates in this trait market.  

15H

25 ,H 35H 45H 55H
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( ) and the HT1 trait market ( ), were also positive and statistically significant: A one-

point increase in  ( ) is associated with a $32 ($14.92) per bag increase in the price of RW 

(HT1) seeds.  Finally, the concentration effect in the ECB trait market is negative but not 

statistically significant.  

33H 44H

33H 44H

We have shown in the model section that the effects of cross-market 

concentration ,  ,ijH i j≠  depend on the substitutability/complementarity relationship between 

traits i and j. We expect that an increase in the cross-market concentration ijH will be associated 

with a rise (decrease) in the price if the two components are substitutes (complements).  

Of the five cross GHHI’s that involves conventional seed ( , , , , ), only 

the coefficients on  (conventional market share crossed with ECB market share) and  

(conventional market share crossed with HT1 market share) are statistically significant.  The 

positive effect of both coefficients suggests that the ECB trait is viewed as a substitute for the 

conventional seed from the perspective of non-GM farmers; and the conventional seed is viewed 

as a substitute for the HT1 trait for the HT1 traited seed adopters. This is plausibly explained by 

the presence of a “yield drag” associated with adding a trait into a seed (Avise 2004, p. 41), 

which would induce some substitution in demand between this trait and conventional seed.   

12H 21H 13H 14H 41H

12H 41H

All the cross-market concentration effects involving biotech traits are statistically 

significant. This stresses the importance of a cross-market evaluation of market power. The ECB 

and RW cross-market effects (  and ) are both negative. This suggests that these two IR 

traits are complements to each other.  Since these two traits are targeting the control of different 

insects, this could reflect the fact that crop damages caused by one insect infestation are larger in 

the presence of damages from another insect infestation.  The ECB and HT1 effects (  and 

23H 32H

24H
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42H ) are both positive, suggesting that the ECB and HT1 traits are substitutes. The RW and HT1 

effects (  and ) are statistically significant but with opposite sign, suggesting that the RW 

trait and HT1 trait may have asymmetric effects on each other: HT1 trait is viewed as 

complement to RW trait by RW traited seed adopters; and RW trait is viewed as substitute for 

HT1 trait by HT1 traited seed adopters. This indicates that the effects of insect infestation on 

corn yield differ significantly from those for weed infestation.   

34H 43H

Location effects: Corn seed prices are found to vary significantly across states. 

Compared to Illinois, the price difference is statistically significant for Iowa ($1.53), Indiana (-

$1.13), Ohio (-$2.16), Wisconsin (-$2.34), and Kentucky (-$3.22). This suggests that seed 

companies do price discriminate across regions, reflecting spatial differences in elasticities of 

demand for seeds. The longitude variables are not statistically significant. But the latitude 

variables have significant effects on corn seed price: the linear term is positive while the 

quadratic term is negative. This suggests that seed price rises from south to north, reaches a peak 

near the center of the Corn Belt19 and then declines when moving further north. This confirms 

significant differences in seed prices between the center of the Corn Belt and fringe regions.  

  Purchase source effects: Recall that most farmers purchase seed from “Farmer dealer or 

agent”, followed by “Direct from seed company” , and “Myself, I am a dealer for that company” 

.  Compared to purchasing from “Farmer dealer or agent”, “buying directly from a seed 

company” costs about $4.57 less, while purchasing from “myself” costs about $4.40 less. These 

results may reflect the effect of farmer’s bargaining position, but also possibly the presence of 

price discrimination across different modes of purchase. 

 

                                                 
19 For the latitude, the peak is reached at 40.54, which is close to the center of our study region (mean 

latitude at 41.71) 
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Table 3.  OLS and 2SLS regression with robust standard errors,a, b, c, d

OLS 2SLS Dependant Var: Price ($/bag) 

Coefficient t-statistics Coefficient Robust z 
statistics 

Characteristic effects, benchmark is K1: Conventional seed 
2K  (ECB) 24.31*** 46.93 25.64*** 12.65 

3K  (RW) 31.89*** 23.82 46.06*** 5.09 

4K  (HT1) 1.93*** 2.97 -3.78 -1.16 

5K  (HT2) 6.92*** 18.68 9.63*** 10.28 

23K  -9.49*** -11.20 -11.20*** -7.06 

24K  -10.06*** -30.10 -13.83*** -13.75 

25K  -3.44*** -7.96 -5.82*** -6.00 

34K  -11.03*** -12.74 -14.35*** -10.13 

35K  0.39 0.33 -1.27 -0.67 

45K  -19.70** -2.25 -21.95*** -2.92 

234K  -24.52*** -28.17 -30.62*** -11.82 

235K  -13.63*** -12.26 -18.71*** -6.47 

245K  -16.51*** -24.34 -22.92*** -11.84 

345K  -12.26*** -6.17 -17.36** -5.98 

2345K  -28.85*** -24.78 -37.88*** -10.05 

Market concentration effects 
11H (conventional seed) 11.71*** 15.83 14.81*** 6.47 

22H (ECB) 1.45** 2.41 -0.57 -0.27 

33H (RW) 4.82** 2.04 32.00*** 2.93 

44H (HT1) 11.25*** 12.70 14.92*** 2.91 

12H  on conventional seed 28.06*** 11.72 36.07*** 3.10 

21H  on ECB trait -7.22*** -4.73 -7.29 -0.95 

13H  on conventional seed/RW trait -1.74 -1.00 2.78 0.21 

14H on conventional seed -24.19*** -9.93 -14.58 -1.04 

41H on HT1 trait 9.22*** 6.49 22.42* 1.78 

23H  on ECB trait -2.10*** -6.14 -3.42** -2.38 

32H  on RW trait 1.79 0.74 -28.87*** -3.45 

24H  on ECB trait -2.58*** -5.10 3.00* 1.66 
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42H  on HT1 trait 6.53*** 9.59 10.07*** 4.17 

34H  on RW trait -8.41*** -4.54 -24.98*** -2.98 

43H  on HT1 trait 3.99*** 9.35 7.77*** 4.15 

Other variables 
Post-exit1 -4.36* -1.58 -2.77 -0.59 
Pre-entry2 -5.50** -2.21 -4.52 -1.21 
Pre-entry3 -0.30 -1.34 0.12 -0.11 
Pre-entry4 -7.75*** -3.64 -6.57** -2.02 
Total farm corn acreage (1000 acre) 0.75*** 9.61 0.72*** 4.68 
Longitude 0.33*** 2.90 0.37 1.49 
Longitude squared  -0.01 -1.52 -0.01 -1.00 
Latitude 0.97*** 5.59 1.18*** 3.30 
Latitude squared -0.11*** -6.93 -0.13*** -4.20 
Year 2.30*** 47.42 1.95*** 13.95 
Constant 71.01*** 71.41 70.36*** 29.39 
Number of observations 123861 

a Statistical significance is noted by * at the 10 percent level, ** at the 5 percent level, ** at the 1 percent level. 
b The R2 is 0.54 for the OLS estimation. For the 2SLS estimation, the centered R2 is 0.53, and un-centered R2 is 0.98. 
c Results for the location effects and purchase source effects are not reported here but are discussed in the text. 
d The longitude and latitude measures are normalized by subtracting the lower bound (80 for longitude and 36 for the 
latitude) from the true value. 
   

 Other variables: Most exit and entry dummies are not statistically significant. The only 

exception is Pre-entry4, which is negative and statistically significant at the 5 percent level. The 

introduction of HT1 traited biotech seed may raise the price for all seeds, including the 

conventional ones. This result is consistent with the finding in Shi (2009), where she argues that 

the introduction of biotech seed can raise the conventional seed price. The farm size effect is 

statistically significant: large farms within each state pay more for corn seed. This result may be 

due to the fact that large farms are more productive (compared to smaller farms) and located in 

areas where corn hybrids are better tailored to local growing conditions. The time trend effect is 

positive and statistically significant, reflecting technological improvements in the seed industry. 
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Implications 

In this section, our empirical estimates are used to generate insights on bundle pricing, 

and the interactive role of market power within and across markets on seed pricing. For 

illustration purpose, our analysis focuses on Illinois in 2004. Illinois is one of the largest corn-

producing states in the US, and it has the largest number of farms in our sample. The year 2004 

is chosen as it is in the middle of our sample period; and it avoids entry/exit events for traits. 

Three sets of results are presented. First, we evaluate the effects of bundling/stacking by 

simulating how stacking influences seed prices. Second, we simulate the Lerner indexes applied 

to the pricing of different seed types. This provides useful information on the extent of departure 

from marginal cost pricing. Third, in a further evaluation of market power effects, we simulate 

the potential impact of merger activities.  

 

Simulation of bundling effects 

The bundling literature has identified situations where component pricing may not apply (e.g., 

when the demands for different components are correlated, or when consumers are 

heterogeneous in at least a subset of the component markets). As discussed above, our 

econometric results strongly reject component pricing (i.e., seeds being priced as the sum of their 

component values). This raises the question: how do prices vary across bundles? To address this 

question, we simulate the effects of bundling/stacking on seed prices using mean values of 

relevant variables for Illinois in 2004 (including farm size, the traditional HHIs  and the 

cross market GHHIs

( iiH )

)( ijH ).20   

                                                 
20 The purchase source is set to be from “Farmer who is a dealer or agent”. 
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Table 4 contains the simulation results.21 The simulated mean conventional seed price is 

$90.86/bag, which is presented as the base case (case 1).  Cases 2-16 involve biotech seeds, 

including stacked/bundled seeds. The last column of table 4 reports price premiums measured as 

price differences of each seed type compared to conventional seed.  Except for the seed with two 

herbicide tolerant traits (case 11: ), all biotech seed price premiums are statistically different 

from the mean conventional seed at the 1 percent level or higher.  Thus, seed companies are able 

to generate price premiums linked to specific biotech traits.   

45K

Cases 2-5 reflect the premium attached to seeds sold with a single biotech trait. Adding 

the ECB trait  alone raises the seed price by a premium of $17.96. The corresponding price 

premium is $29.91 for RW , $13.03 for HT1 , and $4.51 for HT2 .  

2( )K

3( )K 4( )K 5( )K

Double, triple, and quadruple-stacked seed prices and premiums are presented in cases 6-

15.  Note first the $41.74 premium for stacking ECB and RW traits .  While this is greater 

than the price premium farmers pay for unstacked versions of these seeds (i.e., K2 or K3), it is 

less than the sum of them (17.96 + 29.91 = $47.87). A similar pattern is evident in all the double 

stacked seed prices except for case 10:  and case 11: . The triple stacking of ECB, RW and 

HT1 traits  has a price premium of $40.49.  This is greater than the value of any individual 

trait component or any relevant double stacked seed price (except for where the price 

difference is insignificant). But this is less than the sum of the individual premiums ($65.41). 

Note also that adding the third trait to any of the , , or  seeds produces a marginal 

contribution of the third trait that is smaller than the contribution of the trait being added into a 

23(K )

)

                                                

35K 45K

234(K

23K

23K 24K 34K

 
)21 Note that we did not simulate the case for HT1 trait stacked with HT2 trait because we have very 

few observations on the stacking system. The same applies for .   
45(K

45K 245K
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single traited system (to form a double stacking system) or alone (to form a single traited 

system). Other triple stacking systems follow a similar pattern.  Finally, the price premium for 

quadruple stacking ( ) is $42.85, which is (weakly) greater than all other scenarios 

(including  and ). As before, the marginal contribution of each individual trait is again 

lower than in a triple system.  

2345K

235K 345K

Table 4. Effects of Bundling/Stacking on Seed Prices, $/bag.a

Case Traits Expected 
Seed Price 

Standard 
Error 

Price difference from  
K1 (Conventional) 

Standard 
Error 

1   K1 (Conventional) 90.86*** 0.46 0.00  
2   K2 (ECB) 108.82*** 0.49 17.96*** 0.65 
3   K3 (RW) 120.78*** 1.28 29.91*** 1.16 
4   K4 (HT1) 103.89*** 0.67 13.03*** 0.79 
5   K5 (HT2) 95.38*** 0.67 4.51*** 0.80 
6   K23 132.60*** 1.41 41.74*** 1.34 
7   K24 113.13*** 0.75 22.26*** 0.88 
8   K25 112.62*** 0.59 21.76*** 0.72 
9   K34 124.54*** 1.43 33.68*** 1.33 
10   K35 129.11*** 1.43 38.25*** 1.56 
11   K45 91.40*** 7.49 0.54 7.53 
12   K234 131.35*** 1.42 40.49*** 1.41 
13   K235 134.80*** 1.64 43.94*** 1.64 
14   K245 113.67*** 0.90 22.81*** 1.02 
15   K345 131.20*** 2.19 40.34*** 2.16 
16   K2345 133.72*** 1.69 42.85*** 1.74 

a Statistical significance is noted by * at the 10 percent level, ** at the 5 percent level, and *** at the 1 percent level. 
 

Overall, these results document significant departures from component pricing (where 

seeds are priced as the sum of their component values). The evidence supports sub-additive 

pricing. It shows that the marginal contribution of each component to the seed price declines 

with the number of components. Note that such a finding is consistent with the presence of 

economies of scope in seed production. Indeed, synergies in R&D investment (treated as fixed 

cost) across seed types can contribute to reducing total cost. This cost reduction can then be (at 
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least partially) shared with farmers in the form of lower seed prices. Our empirical evidence 

against component pricing and in support of sub-additive pricing could then be interpreted as 

indirect evidence of scope economies in seed production. 

 

Estimated Lerner indexes 

As discussed earlier, the Lerner index provides a simple characterization of the strength of 

imperfect competition: it is zero under marginal cost pricing, but positive when price exceeds 

marginal cost. The market power component M in equation (6) gives a per-unit measure of the 

price enhancement beyond marginal cost.  And the associated Lerner index is L = M
p .  Evaluated 

at sample means for Illinois in 2004, the Lerner indexes (100 × L) are reported in Table 5 for 

selected seed types.   

The Lerner indexes are statistically significant at the 10 percent level in four cases (out of 

eight cases).22 When significant, the Lerner indexes are positive in three cases (conventional 

seed , HT1 traited seed , and double stacked seed of ECB and HT1 ) but negative in the 

case of  (double stacked seed of ECB and RW), with estimates of (100 × L) varying from 

5.92 percent for conventional seeds ( ) to 20.87 percent for HT1  for the positive cases 

and -10.11 percent for ECB and RW ( ). This provides empirical evidence that market power 

affects seed prices. The effect of market power on price is found to be moderate in the 

conventional seed market , but larger in the HT1 market. Finally, the Lerner indexes are not 

statistically different from zero for  (ECB) and  (RW), but is negative and statistically 

significant in the stacked market . Thus, our analysis suggests empirical evidence of 

1K 4K 24K

23K

1K 4(K )

                                                

23K

1K

2K 3K

23K

 
22 Cases involving the  trait are dropped due to lack of variation in the market concentration. 5K 5K
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complementarity interacting with market power: an increased market concentration in these two 

sub-market is associated with a price reduction in the relevant stacked seed market. 

Table 5. Simulated Lerner Indexesa

 Lerner Index (100 × 
L) 

Standard Error t-ratio 

K1 (Conventional) 5.92*** 1.51 3.91 
K2 (ECB) -2.44 2.05 -1.19 
K3 (RW) -8.99 6.31 -1.43 
K4 (HT1) 20.87*** 2.79 7.47 
K23 -10.11** 5.02 -2.01 
K24 15.90*** 2.89 5.50 
K34 8.47 6.72 1.26 
K234 6.00 5.64 1.06 

a Lerner indexes are calculated from prices at the mean GHHI levels compared to the case of competition (GHHI=0)  
b Statistical significance is noted by * at the 10 percent level, ** at the 5 percent level, and *** at the 1 percent level. 

 

Effects of changing market structure 

In equation (3), we defined the GHHI’s n n
ij i jn

H
∈

≡ s s∑ N
 for sub-markets i and j. As 

discussed above, the H’s are endogenous variables measuring market concentrations. They 

provide useful information linking market structure with pricing. The assessment of changing 

market structures is complex in the presence of bundling when the same firms sell different 

bundled goods, as all the  typically change in response to any change in industry structure. 

The changes in the  depend on the nature of changes in firms’ concentration in all relevant 

markets. This indicates that changes in market structure can have complex effects on prices.  

'sijH

'sijH

We evaluated such effects by simulating the effects of changing market structures 

associated with alternative merger scenarios. Several simulations are presented to evaluate the 

potential effects of increased market concentrations on seed prices. Each simulation considers a 

hypothetical merger in a given market, merger leading to a monopoly in that market (where the 
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post-merger market share becomes equal to 1).23 While these are rather extreme scenarios, the 

simulated effects can be interpreted as upper bound estimates of the potential impact of market 

power. Three sets of (hypothetical) mergers are simulated: 1/ mergers between biotech 

companies within each genetic trait market (biotech/biotech within trait); 2/ mergers between 

biotech companies producing different genetic traits (biotech/biotech across traits); and 3/ 

mergers between biotech companies and seed companies (biotech/seed merger). Again, such 

merger scenarios are counterfactual. They are presented to illustrate how our analysis can be 

used to evaluate the price implications of changing market structures.  

The price effects of three sets of merger scenarios are reported in Table 6. The first set 

(scenarios 1-3) considers mergers between biotech companies within a given genetic trait market 

(biotech/biotech within trait). This covers mergers of biotech firms within the ECB market 

(scenario 1), within the RW market (scenario 2), and within the HT1 market (scenario 3). In 

scenarios 1-3, Table 6 shows that the effect of such mergers on seed price would not be 

statistically significant for ECB and RW. However, the effect is statistically significant for HT1. 

Our simulation results show that mergers of biotech firms in the HT1 markets could potentially 

induce a price increase of up to $19.08/bag of HT1 seed.  

The second set (scenarios 4-6) considers mergers between biotech companies producing 

different genetic traits (biotech/biotech across traits). This covers mergers of biotech firms 

involved in ECB and RW markets (scenario 4), in ECB and HT1 markets (scenario 5), in RW and 

HT1 markets (scenario 6). In each case, the simulations again assume that the merger leads to a 

monopoly in the corresponding market (with a market share equal to 1). Table 6 shows that the 

mergers across ECB and RW markets are associated with a price reduction of $5.99/bag for ECB 

                                                 
23 In situations where the mergers lead to increased market concentration but without full monopolization, 

note that our simulations present upper-bound estimates of the corresponding price effect.  
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seeds (scenario 4a), a price reduction of $25.10/bag for RW seeds (scenario 4b), and a price 

reduction of $31.09/bag for ECB/RW stacking seeds (scenario 4c). The results for scenario 4 

underscore the importance of possible efficiency gains that might emerge from mergers.   

Mergers involving ECB and HT1 could potentially induce a price increase of up to $22.22/bag of 

HT1 seed (scenario 5b) and $22.55/bag of ECB/HT1 stacking seeds (scenario 5c), but not on the 

ECB trait market. And mergers involving RW and HT1 could be associated with a price reduction 

of  up to $21.34/bag of RW seed (scenario 6a) and a price increase of up to $19.91/bag of HT1 

seed (scenario 6b). However, the price effects on RW/HT1 stacking seeds (scenario 6c) are not 

statistically significant.  

Finally, the third set (scenarios 7-9) considers mergers involving biotech companies and 

seed companies (biotech/seed merger). The simulations assume that the mergers lead to the 

monopolization in the corresponding biotech trait market. However, since the monopolization of 

seed companies is unlikely (there are too many seed companies), the mergers in scenarios 7-9 are 

assumed to increase market concentrations for conventional seed (as measured by the  and 

) only to the maximum observed in our sample. How are mergers involving both seed 

companies and biotech firms associated with changes in conventional seed prices? The simulated 

price change can be up to +$32.37/bag when mergers involve ECB biotech firms (scenario 7). 

However, our simulations indicate that the effects of such mergers would not be statistically 

significant when it involves RW biotech firms (scenario 8) or when the mergers involve HT1 

firms (scenario 9). Importantly, note that these simulation results capture cross-market effects 

contributing to the exercise of market power in the conventional seed market. These

'siiH

'sijH

 cross-

market effects play a significant role in the evaluation of the exercise of market power.   
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Table 6. Simulated Merger Effectsa

 
Sector affected 

by mergers 
 

Scenarios 
 

Market/Price 
Affected 

Induced 
price change 

($/bag) 

Standard 
Error 

 
t-ratio 

ECB (K2) 1 ECB (K2) -1.88 2.82 -0.67 
RW (K3) 2 RW (K3) -3.37 3.21 -1.05 
HT1 (K4) 3 HT1 (K4) 19.08*** 3.74 5.10 

4a ECB (K2) -5.99** 3.01 -1.99 
4b RW (K3) -25.10*** 9.35 -2.68 

ECB and RW 
(K2, K3) 

4c ECB/RW (K23) -31.09*** 10.45 -2.97 
5a ECB (K2) 0.33 3.33 0.10 
5b HT1 (K4) 22.22*** 4.52 4.92 

ECB and HT1 
(K2, K4) 

5c ECB/HT1(K24) 22.55*** 6.20 3.64 
6a RW (K3) -21.34*** 6.30 -3.39 
6b HT1 (K4) 19.91*** 3.62 5.50 

RW and HT1 
(K3, K4) 

6c RW/HT1 (K34) -1.43 6.14 -0.23 
Conv. and ECB 

(K1, K2) 
7 Conventional (K1) 32.37*** 8.93 3.62 

Conv. and RW 
(K1, K3) 

8 Conventional (K1) 7.87 10.09 0.78 

Conv. and HT1 
(K1, K4) 

9 Conventional (K1) -5.99 10.16 -0.59 

a Statistical significance is noted by * at the 10 percent level, ** at the 5 percent level, and *** at the 1 percent level. 
 

The simulations in Table 6 illustrate the potential usefulness of the model in studying the 

effects of changing market concentrations. For example, in a pre-merger analysis, this would 

involve evaluating the HHIs and GHHIs in all relevant markets before and after a proposed 

merger with a quantitative assessment of the price effects. Alternatively, the model could be used 

to estimate the effects of spin-offs by evaluating their anticipated effects on HHIs and GHHIs 

and by simulating the associated price changes. 
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Concluding remarks 

This paper has presented an analysis of bundle pricing under imperfect competition. A 

multiproduct Cournot model identifies the role of substitution/ complementarity in bundle 

pricing. It explains how oligopoly pricing manifests itself, and motivates generalized HHI 

measures of market concentration. The model is applied to the U.S. corn seed market and 

estimated using farm-level data from 2000-2007.  The U.S. corn seed market represents a unique 

opportunity to evaluate the pricing of bundled goods, where patented genetic traits are inserted 

into conventionally bred corn seed either bundled or independently. These GM seeds compete 

alongside conventional seeds in a spatially diverse farm sector. There is considerable variation in 

the spatial concentration of conventional seeds and seeds with various patented genetic traits. 

Through the years of this study, GM seeds have been adopted quickly among U.S. farmers and 

are part of a broader wave of technological progress impacting the agriculture sector.   

The econometric investigation documents the determinants of seed prices, including the 

effects of bundling and the pricing component associated with imperfect competition. Several 

major conclusions follow the research findings.  First, we find extensive evidence of spatial price 

discrimination. We observe, ceteris paribus, that seed prices vary by state and in a south to north 

pricing pattern that peaks in the central part of the Corn Belt.  This would be consistent with a 

type of price discrimination pattern that recognizes the inherent productivity of land in the Corn 

Belt. Second, we find strong evidence of subadditive bundle pricing, thus rejecting standard 

component pricing. This is consistent with the presence of economies of scope in seed 

production and/or demand complementarities. Third, we investigated the interactive role of 

market concentrations with complementarity/substitution effects in the pricing of seeds.  Using 

generalized HHI’s, this helps to document how traditional and cross-market effects of imperfect 
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competition can contribute to higher (or lower) seed prices. Our results indicate that Lerner 

indices for three seed types are positive and statistically significant while prices for one market 

indicate a pro-competitive environment. Fourth, our simulation of hypothetical mergers produced 

numerous interesting results. Perhaps most striking is a simulation involving a merger of 

conventional seed firm with a biotech firm selling seeds traited for ECB. Conventional seed 

prices provide an important competitive benchmark by which farmers can use to weigh the 

decision to purchase biotech seed.  The simulated merger indicates that the conventional seed 

price would rise significantly.  Such a price increase may be of great concern to policymakers 

because the impact would contribute to raising the price of the entire corn seed complex.      

Our analysis could be extended in several directions. First, it would be useful to explore 

the implications of bundle pricing and imperfect competition in vertical markets. Second, there is 

a need for empirical investigations of bundle pricing analyzed jointly with bundling decisions. 

Third, it would be useful to estimate the separate effects of supply versus demand factors in 

bundle pricing. But this would require better data (especially on the supply side) to identify these 

effects separately. Finally, there is a need to explore empirically the economics of bundling 

applied to other sectors. These appear to be good topic for further research.  
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	Table 1. Average price for different seeds ($ per bag), 2000 - 2007
	Table 2. Summary statistics
	Market concentration effects: The model incorporates market share information about each of the trait using the traditional Herfindahl indexes along with generalized cross-Herfindahl indexes as given in equations (5a)-(5c).  Here, we discuss the partial effects of concentration and withhold a global assessment of market concentration until the implications section.   The partial effects of changes to the traditional Herfindahl indexes for each trait are presented in the first four rows of the “Market concentration effects”. In this context, our estimates indicate that an increase in market concentration for conventional seeds (as measured by ) has a positive and statistically significant association with the price of conventional seeds. More specifically, a one-point increase in  is associated with a $14.81 per bag increase in the price of conventional seeds. The partial effect of concentration in the RW trait market ( ) and the HT1 trait market ( ), were also positive and statistically significant: A one-point increase in   ( ) is associated with a $32 ($14.92) per bag increase in the price of RW (HT1) seeds.  Finally, the concentration effect in the ECB trait market is negative but not statistically significant. 


